685 research outputs found

    Coupling of spin and vibrational degrees of freedom of adsorbates at metal surfaces probed by vibrational sum-frequency generation

    Get PDF
    Vibrational spectroscopy using sum-frequency generation has been used to investigate the coupling between a ferromagnetic thin film and adsorbed molecules, here CO on Ni/Cu(100). The CO stretching vibration exhibits a strong magnetic contrast with a pronounced temperature dependence, underlining the high sensitivity of this adsorbate-specific spectroscopy method. Our results indicate that the strong temperature dependence is caused by dynamical changes in the surface chemical bond when the CO stretch vibration is coupled to thermally excited external vibrational modes

    Ultra-cold atoms in an optical cavity: two-mode laser locking to the cavity avoiding radiation pressure

    Full text link
    The combination of ultra-cold atomic clouds with the light fields of optical cavities provides a powerful model system for the development of new types of laser cooling and for studying cooperative phenomena. These experiments critically depend on the precise tuning of an incident pump laser with respect to a cavity resonance. Here, we present a simple and reliable experimental tuning scheme based on a two-mode laser spectrometer. The scheme uses a first laser for probing higher-order transversal modes of the cavity having an intensity minimum near the cavity's optical axis, where the atoms are confined by a magnetic trap. In this way the cavity resonance is observed without exposing the atoms to unwanted radiation pressure. A second laser, which is phase-locked to the first one and tuned close to a fundamental cavity mode drives the coherent atom-field dynamics.Comment: 7 pages, 7 figure

    Excited-state band mapping and momentum-resolved ultrafast population dynamics in In/Si(111) nanowires investigated with XUV-based time- and angle-resolved photoemission spectroscopy

    Get PDF
    We investigate the excited state electronic structure of the model phase transition system In/Si(111) using femtosecond time- and angle-resolved photoemission spectroscopy (trARPES). An extreme ultraviolet 500 kHz laser source at 21.7 eV is utilized both to map the energy of excited states above the Fermi level and follow the momentum-resolved population dynamics on a femtosecond timescale. Excited-state band mapping is used to characterize the normally unoccupied electronic structure above the Fermi level in both structural phases of In/Si(111): the metallic (4 x 1) and the gapped (8 x 2) phases. The extracted band positions are compared withband- structure calculations utilizing density functional theory within both the local density approximation and GW approximations (single-particle Green's function (G) + screened Coulomb interaction (W)). While good overall agreement is found between the GW-calculated band structure and experiment, deviations in specific momentum regions may indicate the importance of excitonic effects not accounted for at this level of approximation. To probe the dynamics of these excited states, their momentum- resolved transient population dynamics are extracted with trARPES. The transient intensities are compared to a simulated spectral function modeled by a state population employing a transient elevated electronic temperature as determined experimentally. This allows the momentum-resolved population dynamics to be quantitatively reproduced, revealing important insights into the transfer of energy from the electronic system to the lattice. In particular, a comparison between the magnitude and relaxation time of the transient electronic temperature observed by trARPES with those of the lattice as probed in previous ultrafast electron diffraction studies implies a highly nonthermal phonon distribution at the surface following photo-excitation. This suggests that the energy from the initially excited electronic system is initially transferred to high-energy optical phonon modes followed by cooling and thermalization of the photo-excited system by much slower phonon-phonon coupling

    Reference Values of the QOLIBRI from General Population Samples in the United Kingdom and The Netherlands

    Get PDF
    The Quality of Life after Traumatic Brain Injury (QOLIBRI) instrument is an internationally validated patient-reported outcome measure for assessing disease-specific health-related quality of life (HRQoL) in individuals after traumatic brain injury (TBI). However, no reference values for general populations are available yet for use in clinical practice and research in the field of TBI. The aim of the present study was, therefore, to establish these reference values for the United Kingdom (UK) and the Netherlands (NL). For this purpose, an online survey with a reworded version of the QOLIBRI for general populations was used to collect data on 4403 individuals in the UK and 3399 in the NL. This QOLIBRI version was validated by inspecting descriptive statistics, psychometric criteria, and comparability of the translations to the original version. In particular, measurement invariance (MI) was tested to examine whether the items of the instrument were understood in the same way by different individuals in the general population samples and in the TBI sample across the two countries, which is necessary in order to establish reference values. In the general population samples, the reworded QOLIBRI displayed good psychometric properties, including MI across countries and in the non-TBI and TBI samples. Therefore, differences in the QOLIBRI scores can be attributed to real differences in HRQoL. Individuals with and without a chronic health condition did differ significantly, with the latter reporting lower HRQoL. In conclusion, we provided reference values for healthy individuals and individuals with at least one chronic condition from general population samples in the UK and the NL. These can be used in the interpretation of disease-specific HRQoL assessments after TBI applying the QOLIBRI on the individual level in clinical as well as research contexts

    Search for Charginos with a Small Mass Difference with the Lightest Supersymmetric Particle at \sqrt{s} = 189 GeV

    Get PDF
    A search for charginos nearly mass-degenerate with the lightest supersymmetric particle is performed using the 176 pb^-1 of data collected at 189 GeV in 1998 with the L3 detector. Mass differences between the chargino and the lightest supersymmetric particle below 4 GeV are considered. The presence of a high transverse momentum photon is required to single out the signal from the photon-photon interaction background. No evidence for charginos is found and upper limits on the cross section for chargino pair production are set. For the first time, in the case of heavy scalar leptons, chargino mass limits are obtained for any \tilde{\chi}^{+-}_1 - \tilde{\chi}^0_1 mass difference

    Formation of the ηc\eta_c in Two-Photon Collisions at LEP

    Full text link
    The two-photon width Γγγ\Gamma_{\gamma\gamma} of the ηc\eta_c meson has been measured with the L3 detector at LEP. The ηc\eta_c is studied in the decay modes π+ππ+π\pi^+\pi^-\pi^+\pi^-, π+π\pi^+\pi^-K+^+K^-, Ks0_s^0K±π^\pm\pi^\mp, K+^+Kπ0^-\pi^{0}, π+πη\pi^+\pi^-\eta, π+πη\pi^+\pi^-\eta', and ρ+ρ\rho^+\rho^- using an integrated luminosity of 140 pb1^{-1} at s91\sqrt{s} \simeq 91 GeV and of 52 pb1^{-1} at s183\sqrt{s} \simeq 183 GeV. The result is Γγγ(ηc)=6.9±1.7(stat.)±0.8(sys.)±2.0\Gamma_{\gamma\gamma}(\eta_c) = 6.9 \pm 1.7 (stat.) \pm 0.8 (sys.) \pm 2.0(BR) keV. The Q2Q^2 dependence of the ηc\eta_c cross section is studied for Q2<9Q^2 < 9 GeV2^{2}. It is found to be better described by a Vector Meson Dominance model form factor with a J-pole than with a ρ\rho-pole. In addition, a signal of 29±1129 \pm 11 events is observed at the χc0\chi_c0 mass. Upper limits for the two-photon widths of the χc0\chi_c0, χc2\chi_c2, and ηc\eta_c' are also given

    Bose-Einstein Correlations of Neutral and Charged Pions in Hadronic Z Decays

    Get PDF
    Bose-Einstein correlations of both neutral and like-sign charged pion pairs are measured in a sample of 2 million hadronic Z decays collected with the L3 detector at LEP. The analysis is performed in the four-momentum difference range 300 MeV < Q < 2 GeV. The radius of the neutral pion source is found to be smaller than that of charged pions. This result is in qualitative agreement with the string fragmentation model

    Search for the standard model Higgs boson at LEP

    Get PDF

    Direct Observation of Longitudinally Polarised W Bosons

    Get PDF
    The three different helicity states of W bosons, produced in the reaction e+e- -> W+W- -> l nu q q~ are studied using leptonic and hadronic W decays at sqrt{s}=183GeV and 189GeV. The W polarisation is also measured as a function of the scattering angle between the W- and the direction of the e- beam. The analysis demonstrates that W bosons are produced with all three helicities, the longitudinal and the two transverse states. Combining the results from the two center-of-mass energies and with leptonic and hadronic W decays, the fraction of longitudinally polarised W bosons is measured to be 0.261 +/- 0.051(stat.) +/- 0.016(syst.) in agreement with the expectation from the Standard Model

    Study of Z Boson Pair Production in e^+e^- Interactions at \sqrt{s}=192 - 202 GeV

    Full text link
    The cross section for the production of Z boson pairs is measured using the data collected by the L3 detector at LEP in 1999 in e^+e^- collisions at centre-of-mass energies ranging from 192 GeV up to 202 GeV. Events in all the visible final states are selected, measuring the cross section of this process. The special case of final states containing b quarks is also investigated. All results are in agreement with the Standard Model predictions
    corecore