Direct Observation of Longitudinally Polarised $\mathbf{W}^{ \pm}$ Bosons

The L3 Collaboration

Abstract

The three different helicity states of $\mathrm{W}^{ \pm}$bosons, produced in the reaction $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow$ $\mathrm{W}^{+} \mathrm{W}^{-} \rightarrow \ell \nu \mathrm{q} \overline{\mathrm{q}}$ are studied using leptonic and hadronic W decays at $\sqrt{s}=183 \mathrm{GeV}$ and 189 GeV . The W polarisation is also measured as a function of the scattering angle between the W^{-}and the direction of the e^{-}beam. The analysis demonstrates that W bosons are produced with all three helicities, the longitudinal and the two transverse states. Combining the results from the two center-of-mass energies and with leptonic and hadronic W decays, the fraction of longitudinally polarised $\mathrm{W}^{ \pm}$ bosons is measured to be 0.261 ± 0.051 (stat.) ± 0.016 (syst.) in agreement with the expectation from the Standard Model.

Submitted to Phys. Lett. B

Introduction

Previous measurements of $\mathrm{W}^{+} \mathrm{W}^{-}$production at LEP have concentrated on measurements of the W mass, the W branching ratios, the differential and total cross sections and the anomalous couplings [1-3]. These measurements show, using the differential cross sections with respect to the W production and decay angles, good agreement with theoretical calculations within the Standard Model [4,5. This good agreement with the Standard Model indicates indirectly that W bosons with all three helicities are produced in the reaction $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{W}^{+} \mathrm{W}^{-}$.

The primary goal of the measurement described in this paper is a quantitative and model independent analysis of all three W helicity states and in particular, the direct observation of longitudinally polarised W bosons. Measurements of longitudinally polarised W bosons have previously been reported in the reaction $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{W}^{+} \mathrm{W}^{-}$[3] and in top decays [6].

At center-of-mass energies close to 190 GeV and within the Standard Model, one expects that about one quarter of all W bosons should be longitudinally polarised [7]. Furthermore, the production of W bosons with different helicities depends strongly on the W^{-}scattering angle $\theta_{\mathrm{W}-}$ with respect to the e^{-}beam direction. For example one expects for $\theta_{\mathrm{W}^{-}}$larger than 90 degrees that almost 40% of the events contain at least one longitudinally polarised W boson. In contrast, for θ_{W} - between 20 and 70 degrees, the cross section is dominated by the neutrino-exchange diagram and the $\mathrm{W}^{+} \mathrm{W}^{-}$should be produced dominantly with transverse polarisation. The fractions of the $\mathrm{W}^{ \pm}$helicity states should thus also be measured as a function of $\theta_{\mathrm{W}-}$.

The measurement is performed with the L3 detector at LEP, using data samples of $55.5 \mathrm{pb}^{-1}$ and $176.4 \mathrm{pb}^{-1}$ collected at average center-of-mass energies of 183 GeV and 189 GeV , respectively. A detailed description of the L3 detector and its performance is given in reference [8]. The L3 detector response for $\mathrm{W}^{+} \mathrm{W}^{-}$events from the KORALW [9] and the EEWW [10] Monte Carlo programs is simulated with the GEANT-based L3 detector simulation program [11].

Analysis strategy

The different W helicity states result in different angular distributions of the W decay products. The decay angle θ^{*} in the W rest frame between the left-handed negatively charged lepton and the W^{-}has a $\left(1 \pm \cos \theta^{*}\right)^{2}$ distribution for a W^{-}with helicity ∓ 1. The righthanded positively charged lepton has a $\left(1 \pm \cos \theta^{*}\right)^{2}$ distribution for a W^{+}with helicity ± 1. Longitudinally polarised W bosons (helicity 0) result in a symmetric distribution of the decay products, proportional to $\sin ^{2} \theta^{*}$. To simplify the description of the helicity fractions, we refer in the following text only to the fractions f_{-}, f_{0} and f_{+}of the W^{-}helicities, which includes the corresponding W^{+}states with f_{+}, f_{0} and f_{-}, respectively.

In order to study the W polarisation, we use events of the type $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{W}^{+} \mathrm{W}^{-} \rightarrow \ell^{ \pm} \nu \mathrm{q} \overline{\mathrm{q}}$ with $\ell^{ \pm}$being either $\mathrm{e}^{ \pm}$or $\mu^{ \pm}$. The neutrino four-momentum vector is reconstructed from the total missing momentum vector of the event. These event samples are essentially background free and allow a measurement with good accuracy of the $\mathrm{W}^{ \pm}$momentum vector, the W charge and the decay angle θ^{*} in the W rest frame.

In contrast to leptonic W decays, where the decay angle θ_{ℓ}^{*} of the $\ell^{ \pm}$is well defined, the corresponding θ_{q}^{*} for quarks in W decays has to be calculated from the hadronic decay products. To approximate the quark decay angle in the W rest frame, we proceed in the following way. First, all particles besides the charged lepton and the missing neutrino in the event are associated with the hadronic decay of the W . We then calculate their associated four-vectors
in the rest frame of the W and determine the corresponding thrust axis in this rest frame. The angle $\theta_{\text {Thrust }}^{*}$ of this thrust axis with respect to the W momentum vector in the laboratory frame is used to describe the quark decay angle θ_{q}^{*} in the W rest frame.

After correcting for efficiencies, the contributions from different W polarisation states are obtained from a fit to the $\cos \theta^{*}$ distributions. For the leptonic W decays the fractions f_{-}, f_{+} and f_{0} of the three W helicity states are obtained from:

$$
\begin{equation*}
\frac{1}{N} \frac{d N}{d \cos \theta^{*}}=f_{-} \frac{3}{8}\left(1+\cos \theta^{*}\right)^{2}+f_{+} \frac{3}{8}\left(1-\cos \theta^{*}\right)^{2}+f_{0} \frac{3}{4} \sin ^{2} \theta^{*} \tag{1}
\end{equation*}
$$

For hadronic W decays, without quark charge identification, one measures only the absolute value of the W hadronic decay angle $\left|\cos \theta^{*}\right|$. However, this distribution can still be used to measure the fractions for the sum of the two transverse helicity states $f_{ \pm}=f_{-}+f_{+}$and f_{0} using:

$$
\begin{equation*}
\frac{1}{N} \frac{d N}{d\left|\cos \theta^{*}\right|}=f_{ \pm} \frac{3}{4}\left(1+\cos ^{2} \theta^{*}\right)+f_{0} \frac{3}{2} \sin ^{2} \theta^{*} \tag{2}
\end{equation*}
$$

The predictions for the compositions of W helicity states as a function of the W^{-}scattering angle $\theta_{\mathrm{W}^{-}}$, following the formalism of Hagiwara et al. [7] and its implementation in the KORALW Monte Carlo program [9], are used as the Standard Model prediction for our analysis. The helicity composition of the total W sample is extracted from a fit to the distribution of the simulated decay angles. From a fit to a KORALW Monte Carlo event sample at $\sqrt{s}=189 \mathrm{GeV}$, with a size 100 times larger than the data sample, the Standard Model predictions for inclusive W helicity fractions f_{-}, f_{+}and f_{0} are obtained to be $56.3 \%, 18.0 \%$ and 25.7%, respectively. The statistical errors are smaller than 0.5%.

Within the statistical errors, the same fractions are found from a WW event sample generated with the EEWW Monte Carlo program [10] which uses the zero total W width approximation and assigns the W helicities on an event by event basis. The W helicity fractions obtained from the fit to the decay angle distributions agree, within statistical errors smaller than 0.9%, with the generated W helicity fractions. This shows that the Born level formulæ (1) and (2) are applicable after radiative corrections.

Selection of $\mathrm{W}^{+} \mathrm{W}^{-} \rightarrow \mathrm{e}(\mu) \boldsymbol{\mu} \mathbf{q} \overline{\mathrm{q}}$ events

The selection of $\mathrm{W}^{+} \mathrm{W}^{-} \rightarrow \mathrm{e}(\mu) \nu \mathrm{q} \overline{\mathrm{q}}$ events is similar to the selections described in our previous publications on WW final states [1]. However, in order to assure well measured W production and decay angles, more restrictive criteria are used. Charged leptons are identified using their characteristic signatures. Electrons are identified as isolated energy depositions in the electromagnetic calorimeter with electromagnetic shower shape which are matched in azimuth to a track reconstructed in the central tracking chamber. The energy and direction of electrons are measured using the electromagnetic calorimeter, while the charge is obtained from the associated track. Muons are identified and measured with tracks reconstructed in the muon chambers which point back to the interaction vertex. All other energy depositions in the calorimeters are assumed to originate from the hadronic W decay. The neutrino momentum vector is set equal to the total missing momentum vector of the event. In addition the following criteria are used for the selection of $\mathrm{W}^{+} \mathrm{W}^{-} \rightarrow \mathrm{e}(\mu) \nu \mathrm{q} \overline{\mathrm{q}}$ events:

- The reconstructed momentum should be greater than 20 GeV for electrons and 15 GeV for muons.
- The momentum of the neutrino should be greater than 10 GeV and its polar angle, θ_{ν}, has to satisfy $\left|\cos \theta_{\nu}\right|<0.95$.
- The invariant mass of the $\ell \nu$ system should be greater than 60 GeV .
- The invariant mass of the hadronic system should be between 50 and 110 GeV .

Using these criteria, 81 and 288 events of the type $\mathrm{W}^{+} \mathrm{W}^{-} \rightarrow \mathrm{e} \nu \mathrm{q} \overline{\mathrm{q}}$ are selected at center-of-mass energies of 183 GeV and 189 GeV , respectively. The corresponding event numbers for $\mu \nu q \bar{q}$ are 67 and 262 events. Adding the electron and muon event samples together, we find 68 and $280 \ell^{-}$events and 80 and $270 \ell^{+}$events, respectively, in the 183 GeV and 189 GeV data samples. These samples have a purity of 96%, where the background from $\mathrm{W}^{+} \mathrm{W}^{-} \rightarrow \tau \nu \mathrm{q} \overline{\mathrm{q}}$ with leptonic τ decays and the background from $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow$ hadrons contribute each about 2%.

The measured $\cos \theta_{\mathrm{W}-}$ distribution is found to be in good agreement with the MC expectations, as shown in Figure $\mathbb{1}$ for events with electrons and with muons for the 189 GeV data sample. About 5% of the accepted events with electron candidates have a wrongly assigned charge. Charge confusion is insignificant for events with muons. The charge confusion depends on the reconstructed W^{-}scattering angle and is largest for W bosons with small scattering angle with respect to the beam direction. This results in a small misassignment between W bosons with helicity +1 and -1 but has negligible effects for the fraction of longitudinally polarised W bosons, which is essentially independent of the charge assignment.

Analysis of the W helicity states

After subtracting the backgrounds from the data, the fractions of the W helicity states are measured from the distributions $d N / d \cos \theta_{\ell^{ \pm}}^{*}$ and $d N / d\left|\cos \theta_{\text {Thrust }}^{*}\right|$ for the leptonic and hadronic W decay angle and as a function of the scattering angle $\theta_{\mathrm{W}^{-}}$.

To extract the W helicity fractions, the observed distributions are corrected for the selection efficiencies which are obtained as a function of $\cos \theta^{*}$. To take into account possible deviations between the helicity fractions in the data and Monte Carlo as a function of $\cos \theta_{\mathrm{W}^{-}}$, the data are corrected differentially using 9 bins of the $\cos \theta_{\mathrm{W}^{-}}$scattering angle. For each $\cos \theta_{\mathrm{W}^{-}}$bin, the efficiency is obtained as a function of $\cos \theta^{*}$ using the ratio of the reconstructed and the generated $\cos \theta^{*}$ distributions for the leptonic and hadronic W decays. The measured $\cos \theta^{*}$ distributions for the corresponding $\cos \theta_{\mathrm{W}}$ - bins in the data are corrected and combined.

The efficiency corrections are obtained from large samples of fully simulated KORALW Monte Carlo events. Using these Monte Carlo events we have studied the accuracy with which we reconstruct the θ^{*} decay angles. The study shows that θ^{*} is reconstructed with a standard deviation of 9.2 degrees and a small shift of -3.2 degrees for the leptonic W decays. For hadronic W decays one finds that θ^{*} is reconstructed with a standard deviation of 12.0 degrees and a shift of +3.3 degrees.

The bias and sensitivity loss due to the efficiency corrections and the θ^{*} resolution has been determined with fully simulated and reconstructed Monte Carlo events where the generated W helicity fractions have been varied over a large range. This was done both with the EEWW Monte Carlo program, where the generated W helicities are known on an event by event basis
and with the KORALW Monte Carlo using a weighting method to assign the W helicities on a statistical basis, ignoring W spin correlations.

Averaging both Monte Carlo estimates one finds that leptonic W decays with 100% helicity -1 states would be measured to consist of 94% of helicity -1 and 6% helicity 0 states while a W sample with 100% helicity +1 would be reconstructed to consist of more than 99% of helicity +1 states. Similar numbers are found if one starts with 100% helicity 0, which would be measured with 92% helicity $0,3 \%$ helicity -1 and 5% helicity +1 . The corresponding numbers for hadronic W decays are that 94% of W bosons with helicity ± 1 and 85% of W bosons with helicity 0 are correctly reconstructed. The study has been repeated as a function of $\cos \theta_{\mathrm{W}^{-}}$and within the statistical errors the results are the same as the ones from the total W sample. To obtain a correction function for the bias and the efficiency loss, the fraction f_{0} has been varied between 0 and 100%. A linear relation between the generated and the fitted W helicity fractions is found.

Results and systematics

These efficiency corrected $\cos \theta^{*}$ distributions are used to extract the $\mathrm{W}^{ \pm}$helicity fractions. The results of the binned χ^{2} fits to these distributions for leptonic and hadronic W decays from the $\sqrt{s}=189 \mathrm{GeV}$ data are shown in Figure 2, No constraint on the total cross section is applied and one finds that the data are well described only if all three W helicity states are used in the fit. Fits which include only -1 and ± 1 helicities, as also shown in Figure 2, fail to describe the data. For leptonic W decays one finds that the χ^{2} increases from 7.1 for seven degrees of freedom if all three W helicity states are included to 17.8 for eight degrees of freedom if only helicity -1 and +1 are used to describe the data. For hadronic W decays the χ^{2} increases from 9.8 for eight degrees of freedom if all three W helicity states are included to 26.4 for nine degrees of freedom if only helicity ± 1 are used to describe the data.

The fraction of longitudinally polarised W bosons in the $\sqrt{s}=189 \mathrm{GeV}$ data is measured to be 0.220 ± 0.077 for the leptonic decays and 0.285 ± 0.084 for hadronic decays. The fractions for the different W helicity states, together with the Standard Model Monte Carlo expectations, are given in Table 1 for the $\sqrt{s}=189 \mathrm{GeV}$ and $\sqrt{s}=183 \mathrm{GeV}$ data. The observed fractions of longitudinally polarised W bosons measured with leptonic and hadronic W decays agree with each other and with the Standard Model expectation of 0.26 and differ from zero by several standard deviations.

Systematic studies have been performed to verify the stability of the fit results with respect to the fraction of longitudinally polarised W bosons. We have investigated (1) uncertainties due to backgrounds, (2) efficiencies and selection criteria, (3) the hadron energy response functions of the electromagnetic and hadronic calorimeters, (4) the difference between the differential and overall efficiency corrections and (5) a method where the fraction f_{0} has been obtained directly from a fit to the measured $\cos \theta^{*}$ distributions using the Monte Carlo shape from the different W helicity states after the reconstruction.

The analysis has been repeated assuming large relative background uncertainies of $\pm 50 \%$ from either the hadronic background or from misidentified $\mathrm{W} \rightarrow \tau \nu$ decays. Using these modifications the measured fractions of longitudinally polarised W bosons is found to vary by at most 0.012 for leptonic W decays and by 0.004 for the hadronic W decays. The hadron energy measurement is obtained from a combination of the energy deposited in the electromagnetic and hadron calorimeter multiplied by calibration constants which take the average calorimeter $e^{ \pm} /$hadron response function into account. These calibration constants have been varied over
a wide range while demanding that the average of the reconstructed masses for leptonic and hadronic W decays agree within better than $\pm 3 \mathrm{GeV}$ with an average W mass of 80.4 GeV . Since the neutrino momentum vector is reconstructed from the observed missing momentum vector, correlations exist between the reconstructed decay angles in the hadronic W system and the corresponding leptonic W system. For example, a particular choice of the energy calibration constants reduces the fraction of longitudinally polarised W bosons by 0.024 as seen with the leptonic W decays but increases the corresponding fraction for the hadronic decays by 0.015 .

Similar variations in the fraction of longitudinally polarised W bosons have been seen with the other systematic studies, as summarised in Table 2. Assuming that the variations given in Table 2 are all due to systematics and adding them in quadrature, a systematic error of ± 0.034, ± 0.024 and ± 0.016 is assigned to the fraction of longitudinally polarised W bosons measured with leptonic, hadronic decays and for the combined measurement, respectively.

Combining the results from the $\sqrt{s}=183 \mathrm{GeV}$ and 189 GeV , ignoring the slight energy dependence of the W helicity fractions expected from the Standard Model, the fraction of longitudinally polarised W bosons is measured to be

$$
f_{0}=0.261 \pm 0.051(\text { stat. }) \pm 0.016(\text { syst. })
$$

and agrees with expectation from the Standard Model of 0.26.
As mentioned in the introduction, it is interesting to measure the W helicity fractions as a function of the W^{-}scattering angle $\theta_{\mathrm{W}^{-}}$. Thus the fits are repeated for different ranges of $\cos \theta_{\mathrm{W}^{-}}$. The $\cos \theta_{\mathrm{W}^{-}}$ranges are selected such that the contributions from the transversely polarised W bosons should be either suppressed or enhanced as shown in Figures 3 and 4 .

To obtain quantitative numbers for the W helicity fractions as a function of $\cos \theta_{\mathrm{W}}$ - the data from the two different center-of-mass energies are combined and the helicity fractions are measured for three bins of $\cos \theta_{\mathrm{W}^{-}}$. The bins are chosen such that large variations of the different helicity fractions are expected [7] yet keeping a sufficient statistical significance. The results, given in Table 3, agree with the Standard Model expectations and demonstrate that the fraction of W bosons with helicity -1 depends on the W scattering angle as shown in Figure 5

In summary, all three W boson helicity states, the two transverse as well as the longitudinal ones are observed with fractions in agreement with Standard Model expectations. The production of longitudinally polarised W bosons is thus directly observed with a significance of five standard deviations.

Acknowledgments

We would like to thank F. Jegerlehner, Z. Kunszt, Z. Wa̧s and D. Zeppenfeld for interesting discussions about the physics of WW production.

We also wish to express our gratitude to the CERN accelerator divisions for the excellent performance of the LEP machine. We acknowledge the contributions of the engineers and technicians who have participated in the construction and maintenance of this experiment.

References

[1] L3 Collab., M. Acciarri et al., Phys. Lett. B454 (1999) 386;
L3 Collab., M. Acciarri et al., Phys. Lett. B436 (1998) 437.
[2] ALEPH Collab., R. Barate et al., Phys. Lett. B453 (1999) 121;
ALEPH Collab., R. Barate et al., Phys. Lett. B453 (1999) 107;
DELPHI Collab., P. Abreu et al., Phys. Lett. B459 (1999) 382;
DELPHI Collab., P. Abreu et al., Phys. Lett. B456 (1999) 310;
OPAL Collab., G. Abbiendi et al., Phys. Lett. B453 (1999) 138;
OPAL Collab., K. Ackerstaff et al., Eur. Phys. J. C2 (1998) 597.
[3] OPAL Collab., G. Abbiendi et al., Eur. Phys. J. C8 (1999) 191.
[4] S.L. Glashow, Nucl. Phys. 22 (1961) 579;
S. Weinberg, Phys. Rev. Lett. 19 (1967) 1264;
A. Salam, "Elementary Particle Theory", Ed. N. Svartholm, Stockholm, "Almquist and Wiksell" (1968), 367.
[5] M. Veltman, Nucl. Phys. B7 (1968) 637;
G. 't Hooft, Nucl. Phys. B35 (1971) 167;
G. 't Hooft and M. Veltman, Nucl. Phys. B44 (1972) 189;
G. 't Hooft and M. Veltman, Nucl. Phys. B50 (1972) 318.
[6] CDF Collab., T. Affolder et al., "Measurement of the Helicity of W Bosons in Top Quark Decays", Preprint FERMILAB PUB-99/257-E, FERMILAB, 1999, submitted to Phys. Rev. Lett.
[7] K. Hagiwara, K. Hikasa, R. D. Peccei and D. Zeppenfeld, Nucl. Phys. B282 (1987) 253.
[8] L3 Collab., B. Adeva et al., Nucl. Inst. Meth. A 289 (1990) 35;
L3 Collab., O. Adriani et al., Physics Reports 236 (1993) 1;
I. C. Brock et al., Nucl. Instr. and Meth. A 381 (1996) 236;
M. Chemarin et al., Nucl. Inst. Meth. A 349 (1994) 345;
M. Acciarri et al., Nucl. Inst. Meth. A 351 (1994) 300;
A. Adam et al., Nucl. Inst. Meth. A 383 (1996) 342;
G. Basti et al., Nucl. Inst. Meth. A 374 (1996) 293.
[9] M. Skrzypek, S. Jadach, W. Placzek and Z. Wąs, Comput. Phys. Commun. 94 (1996) 216;
M. Skrzypek, S. Jadach, M. Martinez, W. Placzek and Z. Wa̧s, Phys. Lett. B372 (1996) 289.
[10] J. Fleischer, F. Jegerlehner, K. Kolodziej and G. J. van Oldenborgh, Comput. Phys. Commun. 85 (1995) 29.
[11] The L3 detector simulation is based on GEANT Version 3.15, R. Brun et al., GEANT 3, CERN-DD/EE/84-1 (Revised), 1987; and on the GEISHA program to simulate hadronic interactions, H. Fesefeldt, RWTH Aachen Report PITHA 85/2, 1985

The L3 Collaboration:

M.Acciarri, ${ }^{26}$ P.Achard ${ }^{19}$ O.Adriani, ${ }^{16}$ M.Aguilar-Benitez ${ }^{25}$ J.Alcaraz, ${ }^{25}$ G.Alemanni ${ }^{22}$ J.Allaby ${ }^{17}$ A.Aloisio, ${ }^{28}$ M.G.Alviggi, ${ }^{28}$ G.Ambrosi, ${ }^{19}$ H.Anderhub, ${ }^{47}$ V.P.Andreev, ${ }^{6,36}$ T.Angelescu, ${ }^{12}$ F.Anselmo, ${ }^{9}$ A.Arefiev ${ }^{27}$ T.Azemoon, ${ }^{3}$ T.Aziz, ${ }^{10}$ P.Bagnaia, ${ }^{35}$ L.Baksay, ${ }^{42}$ A.Balandras, ${ }^{4}$ R.C.Ball, ${ }^{3}$ S.Banerjee, ${ }^{10}$ Sw.Banerjee ${ }^{10}$ A.Barczyk ${ }^{47,45}$ R.Barillère ${ }^{17}$ L.Barone,${ }_{5}^{35}$ P.Bartalini ${ }^{22}$ M.Basile, ${ }^{9}$ R.Battiston, ${ }^{32}$ A.Bay ${ }^{22}$ F.Becattini ${ }^{16}$ U.Becker ${ }^{14}$ F.Behner ${ }^{47}$ L.Bellucci ${ }^{16}$ J.Berdugo, ${ }^{25}$ P.Berges, ${ }^{14}$ B.Bertucci, ${ }^{32}$ B.L.Betev, ${ }^{47}$ S.Bhattacharya, ${ }^{10}$ M.Biasini, ${ }^{32}$ A.Biland, ${ }^{47}$ J.J.Blaising, S.C.Blyth, ${ }^{33}$ G.J.Bobbink, ${ }^{2}$ A.Böhm, ${ }^{1}$ L.Boldizsar, ${ }^{13}$ B.Borgia, ${ }^{35}$ D.Bourilkov ${ }^{47}$ M.Bourquin ${ }^{19}$ S.Braccini, ${ }^{19}$ J.G.Branson, ${ }^{38}$ V.Brigljevic, ${ }^{47}$ F.Brochu, ${ }^{4}$ A.Buffini, ${ }^{16}$ A.Buijs, ${ }^{43}$ J.D.Burger, ${ }^{14}$ W.J.Burger, ${ }^{32}$ A.Button, ${ }^{3}$ X.D.Cai, ${ }^{14}$ M.Campanelli ${ }^{47}$ M.Capell ${ }^{14}$ G.Cara Romeo, ${ }^{9}$ G.Carlino ${ }^{28}$ A.M.Cartacci, ${ }^{16}$ J.Casaus, ${ }^{25}$ G.Castellini, ${ }^{16}$ F.Cavallari, ${ }^{35}$ N.Cavallo ${ }^{28}$ C.Cecchi, ${ }^{32}$ M.Cerrada ${ }^{25}$ F.Cesaroni ${ }^{23}$ M.Chamizo ${ }^{19}$ Y.H.Chang ${ }^{49}$ U.K.Chaturvedi ${ }^{18}{ }^{18}$ M.Chemarin ${ }^{24}$ A.Chen, ${ }^{49}$ G.Chen, ${ }^{7}$ G.M.Chen, ${ }^{7}$ H.F.Chen ${ }^{20}$ H.S.Chen, ${ }^{7}$ G.Chiefari, ${ }^{28}$ L.Cifarelli, ${ }^{37}$ F.Cindolo, ${ }^{9}$ C.Civinini ${ }^{16}$ I.Clare ${ }^{14}$ R.Clare, ${ }^{14}$ G.Coignet, ${ }^{4}$ A.P.Colijn, ${ }^{2}$ N.Colino ${ }^{25}$ S.Costantini, ${ }^{5}$ F.Cotorobai ${ }^{12}$ B.Cozzoni, ${ }^{9}$ B.de la Cruz, ${ }^{25}$ A.Csilling, ${ }^{13}$ S.Cucciarelli, ${ }^{32}$ T.S.Dai ${ }^{14}$ J.A.van Dalen ${ }^{30}$ R.D'Alessandro ${ }^{16}$ R.de Asmundis ${ }^{28}$ P.Déglon ${ }^{19}$ A.Degré, ${ }^{4}$ K.Deiters, ${ }^{45}$ D.della Volpe ${ }^{28}$ P.Denes, ${ }^{34}$ F.DeNotaristefani, ${ }^{35}$ A.De Salvo, ${ }^{47}$ M.Diemoz, ${ }^{35}$ D.van Dierendonck, ${ }^{2}$ F.Di Lodovico, ${ }^{47}$ C.Dionisi ${ }^{35}$ M.Dittmar, ${ }^{47}$ A.Dominguez, ${ }^{38}$ A.Doria ${ }^{28}$ M.T.Dova,${ }^{18, \#}$ D.Duchesneau, D.Dufournaud, ${ }^{4}$ P.Duinker, ${ }^{2}$ I.Duran, ${ }^{39}$ H.El Mamouni ${ }^{24}$ A.Engler, ${ }^{33}$ F.J.Eppling, ${ }^{14}$ F.C.Erné, ${ }^{2}$ P.Extermann ${ }^{19}$ M.Fabre ${ }^{45}$ R.Faccini, ${ }^{35}$ M.A.Falagan ${ }^{25}$ S.Falciano, ${ }^{35,17}$ A.Favara, ${ }^{17}$ J.Fay, ${ }^{24}$ O.Fedin, ${ }^{36}$ M.Felcini, ${ }^{47}$ T.Ferguson, ${ }^{33}$ F.Ferroni, ${ }^{35}$ H.Fesefeldt, ${ }^{1}$ E.Fiandrini, ${ }^{32}$ J.H.Field, ${ }^{19}$ F.Filthaut, ${ }^{17}$ P.H.Fisher, ${ }^{14}$ I.Fisk, ${ }^{38}$ G.Forconi, ${ }^{14}$ L.Fredj, ${ }^{19}$ K.Freudenreich, ${ }^{47}$ C.Furetta, ${ }^{26}$ Yu.Galaktionov, ${ }^{27,14}$ S.N.Ganguli ${ }^{10}$ P.Garcia-Abia ${ }^{5}$ M.Gataullin, ${ }^{31}$ S.S.Gau, ${ }^{11}$ S.Gentile, ${ }^{35,17}$ N.Gheordanescu, ${ }^{12}$ S.Giagu, ${ }^{35}$ Z.F.Gong, ${ }^{20}$ G.Grenier ${ }^{24}$ O.Grimm, ${ }^{47}$ M.W.Gruenewald, ${ }^{8}$ M.Guida, ${ }^{37}$ R.van Gulik, ${ }^{2}$ V.K.Gupta, ${ }^{34}$ A.Gurtu ${ }^{10}$ L.J.Gutay, ${ }^{44}$ D.Haas, ${ }^{5}$ A.Hasan, ${ }^{29}$ D.Hatzifotiadou, ${ }^{9}$ T.Hebbeker, ${ }^{8}$ A.Hervé, ${ }^{17}$ P.Hidas, ${ }^{13}$ J.Hirschfelder, ${ }^{33}$ H.Hofer ${ }^{47}$ G. Holzner, ${ }^{47}$ H.Hoorani ${ }^{33}$ S.R.Hou, ${ }^{49}$ I.Iashvili, ${ }^{46}$ B.N.Jin, ${ }^{7}$ L.W.Jones, ${ }^{3}$ P.de Jong, ${ }^{2}$ I.Josa-Mutuberría, ${ }^{25}$ R.A.Khan, ${ }^{18}$ M.Kaur, ${ }^{18, \diamond}$ M.N.Kienzle-Focacci, ${ }^{19}$ D.Kim, ${ }^{35}$ D.H.Kim, ${ }^{41}$ J.K.Kim ${ }^{41}$ S.C.Kim ${ }^{41}$ J.Kirkby, ${ }^{17}$ D.Kiss, ${ }^{13}$ W.Kittel ${ }^{30}$ A.Klimentov, ${ }^{14,27}$ A.C.König, ${ }^{30}$ A.Kopp ${ }^{46}$ V.Koutsenko, ${ }^{14,27}$ M.Kräber, ${ }^{47}$ R.W.Kraemer, ${ }^{33}$ W.Krenz, ${ }^{1}$ A.Krüger, ${ }^{46}$ A.Kunin ${ }^{14,27}$ P.Ladron de Guevara ${ }^{25}$ I.Laktineh ${ }^{24}$ G.Landi, ${ }^{16}$ K.Lassila-Perini ${ }^{47}$ M.Lebeau ${ }^{17}$ A.Lebedev, ${ }^{14}$ P.Lebrun ${ }^{24}$ P.Lecomte ${ }^{47}$ P.Lecoq, ${ }^{17}$ P.Le Coultre ${ }^{47}$ H.J.Lee, ${ }^{8}$ J.M.Le Goff, ${ }^{17}$ R.Leiste, ${ }^{46}$ E.Leonardi, ${ }^{35}$ P.Levtchenko, ${ }^{36}$ C.Li ${ }^{20}$ S.Likhoded, ${ }^{46}$ C.H.Lin ${ }^{49}$ W.T.Lin ${ }^{49}$ F.L.Linde, ${ }^{2}$ L.Lista, ${ }^{28}$ Z.A.Liu, ${ }^{7}$ W.Lohmann, ${ }^{46}$ E.Longo, ${ }^{35}$ Y.S.Lu, ${ }^{7}$ K.Lübelsmeyer, ${ }^{1}$ C.Luci ${ }^{17,35}$ D.Luckey, ${ }^{14}$ L.Lugnier, ${ }^{24}$ L.Luminari, ${ }^{35}$ W.Lustermann, ${ }^{47}$ W.G.Ma ${ }^{20}$ M.Maity ${ }^{10}$ L.Malgeri, ${ }^{17}$ A.Malinin ${ }^{17}$ C.Maña ${ }^{25}$ D.Mangeol, ${ }^{30}$ P.Marchesini ${ }^{47}$ G.Marian, ${ }^{15}$ J.P.Martin, ${ }^{24}$ F.Marzano ${ }^{35}$ G.G.G.Massaro, ${ }^{2}$ K.Mazumdar ${ }^{10}$ R.R.McNeil, ${ }^{6}$ S.Mele ${ }^{17}$ L.Merola, ${ }^{28}$ M.Meschini ${ }^{16}$ W.J.Metzger, ${ }^{30}$ M.von der Mey, ${ }^{1}$ A.Mihul, ${ }^{12}$ H.Milcent, ${ }^{17}$ G.Mirabelli, ${ }^{35}$ J.Mnich ${ }^{17}{ }^{17}$ G.B.Mohanty, ${ }^{10}$ P.Molnar, ${ }^{8}$ B.Monteleoni, ${ }^{16, \dagger}$ T.Moulik, ${ }^{10}$ G.S.Muanza, ${ }^{24}$ F.Muheim ${ }^{19}{ }^{19}$ A.J.M.Muijs, ${ }^{2}$ M.Musy, ${ }^{35}$ M.Napolitano, ${ }^{28}$ F.Nessi-Tedaldi, ${ }^{47}$ H.Newman, ${ }^{31}$ T.Niessen, ${ }^{1}$ A.Nisati, ${ }^{35}$ H.Nowak ${ }^{46}$ Y.D.Oh ${ }^{41}$ G.Organtini ${ }^{35}$ A.Oulianov, ${ }^{27}$ C.Palomares, ${ }^{25}$ D.Pandoulas, ${ }^{1}$ S.Paoletti, ${ }^{35,17}$ P.Paolucci ${ }^{28}$ R.Paramatti, ${ }^{35}$ H.K.Park ${ }^{33}$ I.H.Park, ${ }^{41}$ G.Pascale ${ }^{35}$ G.Passaleva, ${ }^{17}$ S.Patricelli, ${ }^{28}$ T.Paul, ${ }^{11}$ M.Pauluzzi, ${ }^{32}$ C.Paus, ${ }^{17}$ F.Pauss, ${ }^{47}$ M.Pedace, ${ }^{35}{ }^{3}$ S.Pensotti, ${ }^{26}$ D.Perret-Gallixx ${ }^{4}$ B.Petersen, ${ }^{30}$ D.Piccolo ${ }^{28}$ F.Pierella ${ }^{9}$ M.Pieri, ${ }^{16}$ P.A.Piroué, ${ }^{34}$ E.Pistolesi ${ }^{26}$ V.Plyaskin, ${ }^{27}$ M.Pohl ${ }^{19}$ V.Pojidaev ${ }^{27,16}$ H.Postema ${ }^{14}$ J.Pothier, ${ }^{17}$ N.Produit, ${ }^{19}$ D.O.Prokofiev ${ }^{44}$ D.Prokofiev, ${ }^{36}$ J.Quartieri, ${ }^{37}$ G.Rahal-Callot, ${ }^{47,17}$ M.A.Rahaman, ${ }^{10}$ P.Raics ${ }^{15}$ N.Raja, ${ }^{10}$ R.Ramelli, ${ }^{47}$ P.G.Rancoita, ${ }^{26}$ A.Raspereza, ${ }^{46}$ G.Raven, ${ }^{38}$ P.Razis, ${ }^{29}$ D.Ren, ${ }^{47}$ M.Rescigno, ${ }^{35}$ S.Reucroft, ${ }^{11}$ T.van Rhee, ${ }^{43}$ S.Riemann, ${ }^{46}$ K.Riles, ${ }^{3}$ A.Robohm ${ }^{47}$ J.Rodin, ${ }^{42}$ B.P.Roe, ${ }^{3}$ L.Romero, ${ }^{25}$ A.Rosca, ${ }^{8}$ S.Rosier-Lees, ${ }^{4}$ J.A.Rubio, ${ }^{17}$ D.Ruschmeier, ${ }^{8}$ H.Rykaczewski ${ }^{47}{ }^{4}$ S.Saremi, ${ }^{6}$ S.Sarkar, ${ }^{35}$ J.Salicio, ${ }^{17}$ E.Sanchez ${ }^{17}$ M.P.Sanders, ${ }^{30}$ M.E.Sarakinos, ${ }^{21}$ C.Schäfer, ${ }^{17}$ V.Schegelsky, ${ }^{36}$ S.Schmidt-Kaerst, ${ }^{1}$ D.Schmitz ${ }^{1}$ H.Schopper, ${ }^{48}$ D.J.Schotanus ${ }^{30}$ G.Schwering ${ }^{1}$ C.Sciacca, ${ }^{28}$ D.Sciarrino ${ }^{19}$ A.Seganti, ${ }^{9}$ L.Servoli, ${ }^{32}$ S.Shevchenko, ${ }^{31}$ N.Shivarov, ${ }^{40}$ V.Shoutko ${ }^{27}$ E.Shumilov ${ }^{27}$ A.Shvorob, ${ }^{31}$ T.Siedenburg, ${ }^{1}$ D.Son, ${ }^{41}$ B.Smith ${ }^{33}{ }^{3}$ P.Spillantini ${ }^{16}$ M.Steuer, ${ }^{14}$ D.P.Stickland, ${ }^{34}$ A.Stone, ${ }^{6}$ H.Stone, ${ }^{34, \dagger}$ B.Stoyanov ${ }^{40}$ A.Straessner, ${ }^{1}$ K.Sudhakar, ${ }^{10}$ G.Sultanov, ${ }^{18}$ L.Z.Sun, ${ }^{20}$ H.Suter, ${ }^{47}$ J.D.Swain, ${ }^{18}$ Z.Szillasi ${ }^{42,4}$ T.Sztaricskai, ${ }^{42, \pi}$ X.W.Tang, ${ }^{7}$ L.Tauscher, ${ }^{5}$ L.Taylor, ${ }^{11}$ C.Timmermans, ${ }^{30}$ Samuel C.C.Ting, ${ }^{14}$ S.M.Ting, ${ }^{14}$ S.C.Tonwar, ${ }^{10}$ J.Tóth ${ }^{13}{ }^{13}$ C.Tully ${ }^{17}$ K.L.Tung ${ }^{7}$ Y.Uchida,${ }^{14}$ J.Ulbricht ${ }^{47}$ E.Valente, ${ }^{35}$ G.Vesztergombi, ${ }^{13}$ I.Vetlitsky, ${ }^{27}$ D.Vicinanza, ${ }^{37}$ G.Viertel, ${ }^{47}$ S.Villa, ${ }^{11}$ M.Vivargent, ${ }^{4}$ S.Vlachos, ${ }^{5}$ I.Vodopianov, ${ }^{36}$ H.Vogel ${ }^{33}$ H.Vogt, ${ }^{46}$ I.Vorobiev, ${ }^{27}$ A.A.Vorobyov, ${ }^{36}$ A.Vorvolakos, ${ }^{29}$ M.Wadhwa, ${ }^{5}$ W.Wallraff, ${ }^{1}$ M.Wang, ${ }^{14}$ X.L.Wang, ${ }^{20}$ Z.M.Wang, ${ }^{20}$ A.Weber, ${ }^{1}$ M.Weber, ${ }^{1}$ P.Wienemann, ${ }^{1}$ H.Wilkens, ${ }^{30}$ S.X.Wu, ${ }^{14}$ S.Wynhoff ${ }^{17}$ L.Xia, ${ }^{31}{ }^{14}$ Z.Z.Xu, ${ }^{20}$ B.Z.Yang ${ }^{20}$ C.G.Yang, ${ }^{7}$ H.J.Yang, M.Yang, ${ }^{7}$ J.B.Ye ${ }^{20}{ }^{7}$ S.C.Yeh ${ }^{50}$ An.Zalite, ${ }^{36}$ Yu.Zalite, ${ }^{36}$ Z.P.Zhang, ${ }^{20}$ G.Y.Zhu, ${ }^{7}$ R.Y.Zhu, ${ }^{31}$ A.Zichichi9, ${ }^{9,17,18}$ G.Zilizi, ${ }^{42,{ }^{4}}$ M.Zöller. ${ }^{1}$

1 I. Physikalisches Institut, RWTH, D-52056 Aachen, FRG ${ }^{\S}$
III. Physikalisches Institut, RWTH, D-52056 Aachen, FRG ${ }^{\S}$

2 National Institute for High Energy Physics, NIKHEF, and University of Amsterdam, NL-1009 DB Amsterdam, The Netherlands
3 University of Michigan, Ann Arbor, MI 48109, USA
4 Laboratoire d'Annecy-le-Vieux de Physique des Particules, LAPP,IN2P3-CNRS, BP 110, F-74941 Annecy-le-Vieux CEDEX, France
5 Institute of Physics, University of Basel, CH-4056 Basel, Switzerland
6 Louisiana State University, Baton Rouge, LA 70803, USA
7 Institute of High Energy Physics, IHEP, 100039 Beijing, China ${ }^{\triangle}$
8 Humboldt University, D-10099 Berlin, FRG ${ }^{\S}$
9 University of Bologna and INFN-Sezione di Bologna, I-40126 Bologna, Italy
10 Tata Institute of Fundamental Research, Bombay 400 005, India
11 Northeastern University, Boston, MA 02115, USA
12 Institute of Atomic Physics and University of Bucharest, R-76900 Bucharest, Romania
13 Central Research Institute for Physics of the Hungarian Academy of Sciences, H-1525 Budapest 114, Hungary ${ }^{\ddagger}$
14 Massachusetts Institute of Technology, Cambridge, MA 02139, USA
15 KLTE-ATOMKI, H-4010 Debrecen, Hungary ${ }^{\|}$
16 INFN Sezione di Firenze and University of Florence, I-50125 Florence, Italy
17 European Laboratory for Particle Physics, CERN, CH-1211 Geneva 23, Switzerland
18 World Laboratory, FBLJA Project, CH-1211 Geneva 23, Switzerland
19 University of Geneva, CH-1211 Geneva 4, Switzerland
20 Chinese University of Science and Technology, USTC, Hefei, Anhui 230 029, China ${ }^{\triangle}$
21 SEFT, Research Institute for High Energy Physics, P.O. Box 9, SF-00014 Helsinki, Finland
22 University of Lausanne, CH-1015 Lausanne, Switzerland
23 INFN-Sezione di Lecce and Universitá Degli Studi di Lecce, I-73100 Lecce, Italy
24 Institut de Physique Nucléaire de Lyon, IN2P3-CNRS,Université Claude Bernard, F-69622 Villeurbanne, France
25 Centro de Investigaciones Energéticas, Medioambientales y Tecnologícas, CIEMAT, E-28040 Madrid, Spainb
26 INFN-Sezione di Milano, I-20133 Milan, Italy
27 Institute of Theoretical and Experimental Physics, ITEP, Moscow, Russia
28 INFN-Sezione di Napoli and University of Naples, I-80125 Naples, Italy
29 Department of Natural Sciences, University of Cyprus, Nicosia, Cyprus
30 University of Nijmegen and NIKHEF, NL-6525 ED Nijmegen, The Netherlands
31 California Institute of Technology, Pasadena, CA 91125, USA
32 INFN-Sezione di Perugia and Universitá Degli Studi di Perugia, I-06100 Perugia, Italy
33 Carnegie Mellon University, Pittsburgh, PA 15213, USA
34 Princeton University, Princeton, NJ 08544, USA
35 INFN-Sezione di Roma and University of Rome, "La Sapienza", I-00185 Rome, Italy
36 Nuclear Physics Institute, St. Petersburg, Russia
37 University and INFN, Salerno, I-84100 Salerno, Italy
38 University of California, San Diego, CA 92093, USA
39 Dept. de Fisica de Particulas Elementales, Univ. de Santiago, E-15706 Santiago de Compostela, Spain
40 Bulgarian Academy of Sciences, Central Lab. of Mechatronics and Instrumentation, BU-1113 Sofia, Bulgaria
41 Center for High Energy Physics, Adv. Inst. of Sciences and Technology, 305-701 Taejon, Republic of Korea
42 University of Alabama, Tuscaloosa, AL 35486, USA
43 Utrecht University and NIKHEF, NL-3584 CB Utrecht, The Netherlands
44 Purdue University, West Lafayette, IN 47907, USA
45 Paul Scherrer Institut, PSI, CH-5232 Villigen, Switzerland
46 DESY, D-15738 Zeuthen, FRG
47 Eidgenössische Technische Hochschule, ETH Zürich, CH-8093 Zürich, Switzerland
48 University of Hamburg, D-22761 Hamburg, FRG
49 National Central University, Chung-Li, Taiwan, China
50 Department of Physics, National Tsing Hua University, Taiwan, China
\S Supported by the German Bundesministerium für Bildung, Wissenschaft, Forschung und Technologie
\ddagger Supported by the Hungarian OTKA fund under contract numbers T019181, F023259 and T024011.
【 Also supported by the Hungarian OTKA fund under contract numbers T22238 and T026178.
b Supported also by the Comisión Interministerial de Ciencia y Tecnología.
\sharp Also supported by CONICET and Universidad Nacional de La Plata, CC 67, 1900 La Plata, Argentina.
\diamond Also supported by Panjab University, Chandigarh-160014, India.
\triangle Supported by the National Natural Science Foundation of China.
\dagger Deceased.

$\sqrt{s}=189 \mathrm{GeV}$					
	Helicity W $\rightarrow \ell \nu$		Helicity W \rightarrow hadrons		
	-1	+1	0	± 1	0
Data	0.568 ± 0.071	0.212 ± 0.046	0.220 ± 0.077	0.716 ± 0.086	0.285 ± 0.084
MC	0.56	0.18	0.26	0.74	0.26
$\sqrt{s}=183 \mathrm{GeV}$					
Data	0.56 ± 0.14	0.10 ± 0.08	0.34 ± 0.15	0.75 ± 0.17	0.25 ± 0.17
MC	0.53	0.20	0.27	0.73	0.27

Table 1: Measured W helicity fractions for the leptonic and hadronic W decays for the $\sqrt{s}=189 \mathrm{GeV}$ and $\sqrt{s}=183 \mathrm{GeV}$ data samples. The corresponding helicity fractions in the Standard Model as implemented in the KORALW Monte Carlo program where the statistical errors are negligible in comparison with the data are also given.

Fraction of longitudinally polarised W bosons			
standard method	$\mathrm{W} \rightarrow \ell \nu$	$\mathrm{W} \rightarrow$ hadrons	average
background corrections	0.220 ± 0.077	0.285 ± 0.084	0.252 ± 0.057
efficiency uncertainty	$0.209-0.232$	$0.282-0.286$	$0.241-0.258$
calorimeter calibration (hadrons)	0.214	0.279	0.247
integrated efficiency correction	0.233	$0.282-0.300$	$0.244-0.254$
analysis method	0.237	0.268	0.250
	0.279	0.258	

Table 2: Measurements of the fraction of longitudinally polarised W bosons for leptonic and hadronic W decays from the $\sqrt{s}=189 \mathrm{GeV}$ data sample investigating various sources of systematics.

$\sqrt{s}=183+189 \mathrm{GeV}$ data					
	Helicity $\mathrm{W} \rightarrow \ell \nu$			0	± 1
$\cos \theta_{\mathrm{W}^{-}}$	-1	+1	0 Helicity $\mathrm{W} \rightarrow$ hadrons		
$-1.0--0.4$	0.27 ± 0.12	0.45 ± 0.22	0.28 ± 0.23	0.87 ± 0.28	0.13 ± 0.28
$-0.4-0.3$	0.40 ± 0.09	0.23 ± 0.08	0.37 ± 0.12	0.94 ± 0.16	0.06 ± 0.15
$0.3-1.0$	0.66 ± 0.08	0.08 ± 0.04	0.26 ± 0.08	0.75 ± 0.11	0.23 ± 0.10
$\sqrt{s}=183+189 \mathrm{GeV} \mathrm{KORALW}$ MC					
Helicity W $\rightarrow \ell \nu$					
$\cos \theta_{\mathrm{W}-}$	-1	+1	0	Helicity W \rightarrow hadrons	
$-1.0--0.4$	0.13	0.45	0.42	0.58	0
$-0.4-0.3$	0.42	0.29	0.29	0.71	0.29
$0.3-1.0$	0.67	0.10	0.23	0.77	0.23

Table 3: Same as Table 1, except in this case the helicity fractions are given as a function of $\cos \theta_{\mathrm{W}^{-}}$and combining the $\sqrt{s}=183 \mathrm{GeV}$ and $\sqrt{s}=189 \mathrm{GeV}$ data and Monte Carlo.

Figure 1: The $\cos \theta_{\mathrm{W}^{-}}$distribution for (a) $\mathrm{W}^{+} \mathrm{W}^{-} \rightarrow \mathrm{e} \nu \mathrm{q} \overline{\mathrm{q}}$ and (b) $\mathrm{W}^{+} \mathrm{W}^{-} \rightarrow \mu \nu \mathrm{q} \overline{\mathrm{q}}$ events from the $\sqrt{s}=189 \mathrm{GeV}$ data (points) and the KORALW Monte Carlo prediction (histogram).

Figure 2: Efficiency- and background-corrected $\cos \theta^{*}$ distributions for (a) leptonic W decays and (b) for hadronic W decays at $\sqrt{s}=189 \mathrm{GeV}$. The fit results for the different W helicity hypotheses are also shown.

Figure 3: Corrected $\cos \theta^{*}$ distribution from leptonic W decays for (a) enriched and (b) depleted transverse W polarisation regions together with the fit results. For (a) the required θ_{W} - must satisfy $0.3<\cos \theta_{\mathrm{W}^{-}}<0.9$, while for (b) it has to be $\cos \theta_{\mathrm{W}^{-}}<0.3$ or $0.9<\cos \theta_{\mathrm{W}^{-}}$.

Figure 4: Same as Figure 3 except that in this case $\left|\cos \theta^{*}\right|$ is shown for hadronic W decays.

Figure 5: W helicity fractions f_{0} and f_{-}for three different bins of $\cos \theta_{\mathrm{W}}$ in the combined data sample and in the KORALW Monte Carlo.

