126 research outputs found

    K-SPMM: a database of murine spermatogenic promoters modules & motifs

    Get PDF
    BACKGROUND: Understanding the regulatory processes that coordinate the cascade of gene expression leading to male gamete development has proven challenging. Research has been hindered in part by an incomplete picture of the regulatory elements that are both characteristic of and distinctive to the broad population of spermatogenically expressed genes. DESCRIPTION: K-SPMM, a database of murine Spermatogenic Promoters Modules and Motifs, has been developed as a web-based resource for the comparative analysis of promoter regions and their constituent elements in developing male germ cells. The system contains data on 7,551 genes and 11,715 putative promoter regions in Sertoli cells, spermatogonia, spermatocytes and spermatids. K-SPMM provides a detailed portrait of promoter site components, ranging from broad distributions of transcription factor binding sites to graphical illustrations of dimeric modules with respect to individual transcription start sites. Binding sites are identified through their similarities to position weight matrices catalogued in either the JASPAR or the TRANSFAC transcription factor archives. A flexible search function allows sub-populations of promoters to be identified on the basis of their presence in any of the four cell-types, their association with a list of genes or their component transcription-factor families. CONCLUSION: This system can now be used independently or in conjunction with other databases of gene expression as a powerful aid to research networks of co-regulation. We illustrate this with respect to the spermiogenically active protamine locus in which binding sites are predicted that align well with biologically foot-printed protein binding domains. AVAILABILITY

    A history of why fathers' RNA matters

    Get PDF
    Having been debated for many years, the presence and role of spermatozoal RNAs is resolving, and their contribution to development is now appreciated. Data from different species continue show that sperm contain a complex suite of coding and noncoding RNAs that play a role in an individual's life course. Mature sperm RNAs provide a retrospective of spermatogenesis, with their presence and abundance reflecting sperm maturation, fertility potential, and the paternal contribution to the developmental path the offspring may follow.Sperm RNAs delivered upon fertilization provide some of the initial contacts with the oocyte, directly confront the maternal with the paternal contribution as a prelude to genome consolidation. Following syngamy, early embryo development may in part be modulated by paternal RNAs that can include epidydimal passengers. This provides a direct path to relay an experience and then initiate a paternal response to the environment to the oocyte and beyond. Their epigenetic impact is likely felt prior to embryonic genome activation when the population of sperm delivered transcripts markedly changes. Here, we review the insights gained from sperm RNAs over the years, the subtypes, and the caveats of the RNAs described. We discuss the role of sperm RNAs in fertilization and embryo development, and their possible mechanism(s) influencing offspring phenotype. Approaches to meet the future challenges as the study of sperm RNAs continues, include, elucidating the potential mechanisms underlying how paternal allostatic load, the constant adaptation of health to external conditions, may be relayed by sperm RNAs to affect future generations

    A RNA-Seq Analysis to Describe the Boar Sperm Transcriptome and Its Seasonal Changes

    Get PDF
    Understanding the molecular basis of cell function and ultimate phenotypes is crucial for the development of biological markers. With this aim, several RNA-seq studies have been devoted to the characterization of the transcriptome of ejaculated spermatozoa in relation to sperm quality and fertility. Semen quality follows a seasonal pattern and decays in the summer months in several animal species. The aim of this study was to deeply profile the transcriptome of the boar sperm and to evaluate its seasonal changes. We sequenced the total and the short fractions of the sperm RNA from 10 Pietrain boars, 5 collected in summer and 5 five sampled in winter, and identified a complex and rich transcriptome with 4,436 coding genes of moderate to high abundance. Transcript fragmentation was high but less obvious in genes related to spermatogenesis, chromatin compaction and fertility. Short non-coding RNAs mostly included piwi-interacting RNAs, transfer RNAs and microRNAs. We also compared the transcriptome of the summer and the winter ejaculates and identified 34 coding genes and 7 microRNAs with a significantly distinct distribution. These genes were mostly related to oxidative stress, DNA damage and autophagy. This is the deepest characterization of the boar sperm transcriptome and the first study linking the transcriptome and the seasonal variability of semen quality in animals. The annotation described here can be used as a reference for the identification of markers of sperm quality in pigs

    Male Infertility is a Women\u27s Health Issue-Research and Clinical Evaluation of Male Infertility Is Needed

    Get PDF
    Infertility is a devastating experience for both partners as they try to conceive. Historically, when a couple could not conceive, the woman has carried the stigma of infertility; however, men and women are just as likely to contribute to the couple\u27s infertility. With the development of assisted reproductive technology (ART), the treatment burden for male and unexplained infertility has fallen mainly on women. Equalizing this burden requires reviving research on male infertility to both improve treatment options and enable natural conception. Despite many scientific efforts, infertility in men due to sperm dysfunction is mainly diagnosed by a semen analysis. The semen analysis is limited as it only examines general sperm properties such as concentration, motility, and morphology. A diagnosis of male infertility rarely includes an assessment of internal sperm components such as DNA, which is well documented to have an impact on infertility, or other components such as RNA and centrioles, which are beginning to be adopted. Assessment of these components is not typically included in current diagnostic testing because available treatments are limited. Recent research has expanded our understanding of sperm biology and suggests that these components may also contribute to the failure to achieve pregnancy. Understanding the sperm\u27s internal components, and how they contribute to male infertility, would provide avenues for new therapies that are based on treating men directly for male infertility, which may enable less invasive treatments and even natural conception

    Stability, delivery and functions of human sperm RNAs at fertilization

    Get PDF
    Increasing attention has focused on the significance of RNA in sperm, in light of its contribution to the birth and long-term health of a child, role in sperm function and diagnostic potential. As the composition of sperm RNA is in flux, assigning specific roles to individual RNAs presents a significant challenge. For the first time RNA-seq was used to characterize the population of coding and non-coding transcripts in human sperm. Examining RNA representation as a function of multiple methods of library preparation revealed unique features indicative of very specific and stage-dependent maturation and regulation of sperm RNA, illuminating their various transitional roles. Correlation of sperm transcript abundance with epigenetic marks suggested roles for these elements in the pre- and post-fertilization genome. Several classes of non-coding RNAs including lncRNAs, CARs, pri-miRNAs, novel elements and mRNAs have been identified which, based on factors including relative abundance, integrity in sperm, available knockout data of embryonic effect and presence or absence in the unfertilized human oocyte, are likely to be essential male factors critical to early post-fertilization development. The diverse and unique attributes of sperm transcripts that were revealed provides the first detailed analysis of the biology and anticipated clinical significance of spermatozoal RNAs

    CTCF binds to sites in the major histocompatibility complex that are rapidly reconfigured in response to interferon-gamma

    Get PDF
    Activation of the major histocompatibility complex (MHC) by interferon-gamma (IFNāˆ’Ī³) is a fundamental step in the adaptive immune response to pathogens. Here, we show that reorganization of chromatin loop domains in the MHC is evident within the first 30ā€‰min of IFNāˆ’Ī³ treatment of fibroblasts, and that further dynamic alterations occur up to 6ā€‰h. These very rapid changes occur at genomic sites which are occupied by CTCF and are close to IFNāˆ’Ī³-inducible MHC genes. Early responses to IFNāˆ’Ī³ are thus initiated independently of CIITA, the master regulator of MHC class II genes and prepare the MHC for subsequent induction of transcription

    Sperm centriole assessment identifies male factor infertility in couples with unexplained infertility - a pilot study

    Get PDF
    Unexplained infertility affects about one-third of infertile couples and is defined as the failure to identify the cause of infertility despite extensive evaluation of the male and female partners. Therefore, there is a need for a multiparametric approach to study sperm function. Recently, we developed a Fluorescence-Based Ratiometric Analysis of Sperm Centrioles (FRAC) assay to determine sperm centriole quality. Here, we perform a pilot study of sperm from 10 fertile men and 10 men in couples with unexplained infertility, using three centriolar biomarkers measured at three sperm locations from two sperm fractions, representing high and low sperm quality. We found that FRAC can identify men from couples with unexplained infertility as the likely source of infertility. Higher quality fractions from 10 fertile individuals were the reference population. All 180 studied FRAC values in the 10 fertile individuals fell within the reference population range. Eleven of the 180 studied FRAC values in the 10 infertile patients were outliers beyond the 95% confidence intervals (P = 0.0008). Three men with unexplained infertility had outlier FRAC values in their higher quality sperm fraction, while four had outlier FRAC values in their lower quality sperm fraction (3/10 and 4/10, P = 0.060 and P = 0.025, respectively), suggesting that these four individuals are infertile due, in part, to centriolar defects. We propose that a larger scale study should be performed to determine the ability of FRAC to identify male factor infertility and its potential contribution to sperm multiparametric analysis

    Differential nuclear scaffold/matrix attachment marks expressed genesā€ 

    Get PDF
    It is well established that nuclear architecture plays a key role in poising regions of the genome for transcription. This may be achieved using scaffold/matrix attachment regions (S/MARs) that establish loop domains. However, the relationship between changes in the physical structure of the genome as mediated by attachment to the nuclear scaffold/matrix and gene expression is not clearly understood. To define the role of S/MARs in organizing our genome and to resolve the often contradictory loci-specific studies, we have surveyed the S/MARs in HeLa S3 cells on human chromosomes 14ā€“18 by array comparative genomic hybridization. Comparison of LIS (lithium 3,5-diiodosalicylate) extraction to identify SARs and 2 m NaCl extraction to identify MARs revealed that approximately one-half of the sites were in common. The results presented in this study suggest that SARs 5ā€² of a gene are associated with transcript presence whereas MARs contained within a gene are associated with silenced genes. The varied functions of the S/MARs as revealed by the different extraction methods highlights their unique functional contribution

    Letrozole versus Clomiphene for Infertility in the Polycystic Ovary Syndrome

    Get PDF
    BACKGROUND Clomiphene is the current first-line infertility treatment in women with the polycystic ovary syndrome, but aromatase inhibitors, including letrozole, might result in better pregnancy outcomes. Full Text of Background... METHODS In this double-blind, multicenter trial, we randomly assigned 750 women, in a 1:1 ratio, to receive letrozole or clomiphene for up to five treatment cycles, with visits to determine ovulation and pregnancy, followed by tracking of pregnancies. The polycystic ovary syndrome was defined according to modified Rotterdam criteria (anovulation with either hyperandrogenism or polycystic ovaries). Participants were 18 to 40 years of age, had at least one patent fallopian tube and a normal uterine cavity, and had a male partner with a sperm concentration of at least 14 million per milliliter; the women and their partners agreed to have regular intercourse with the intent of conception during the study. The primary outcome was live birth during the treatment period. Full Text of Methods... RESULTS Women who received letrozole had more cumulative live births than those who received clomiphene (103 of 374 [27.5%] vs. 72 of 376 [19.1%], P=0.007; rate ratio for live birth, 1.44; 95% confidence interval, 1.10 to 1.87) without significant differences in overall congenital anomalies, though there were four major congenital anomalies in the letrozole group versus one in the clomiphene group (P=0.65). The cumulative ovulation rate was higher with letrozole than with clomiphene (834 of 1352 treatment cycles [61.7%] vs. 688 of 1425 treatment cycles [48.3%], P Full Text of Results... CONCLUSIONS As compared with clomiphene, letrozole was associated with higher live-birth and ovulation rates among infertile women with the polycystic ovary syndrome. (Funded by the Eunice Kennedy Shriver National Institute of Child Health and Human Development and others; ClinicalTrials.gov number, NCT00719186.
    • ā€¦
    corecore