24 research outputs found

    Shared genetic etiology between idiopathic pulmonary fibrosis and COVID-19 severity

    Get PDF
    Background: Idiopathic pulmonary fibrosis (IPF) is a complex lung disease, characterized by progressive lung scarring. Severe COVID-19 is associated with substantial pneumonitis and has a number of shared major risk factors with IPF. This study aimed to determine the genetic correlation between IPF and severe COVID-19 and assess a potential causal role of genetically increased risk of IPF on COVID-19 severity. Methods: The genetic correlation between IPF and COVID-19 severity was estimated with linkage disequilib-rium (LD) score regression. We performed a Mendelian randomization (MR) study for IPF causality in COVID-19. Genetic variants associated with IPF susceptibility (P Findings: We detected a positive genetic correlation of IPF with COVID-19 severity (rg=0.31 [95% CI 0.04-0.57], P = 0.023). The MR estimates for severe COVID-19 did not reveal any genetic association (OR 1.05, [95% CI 0.92-1.20], P = 0.43). However, outlier analysis revealed that the IPF risk allele rs35705950 at MUC5B had a dif-ferent effect compared with the other variants. When rs35705950 was excluded, MR results provided evidence that genetically increased risk of IPF has a causal effect on COVID-19 severity (OR 1.21, [95% CI 1.06-1.38], P = 4.24 x 10(-3)). Furthermore, the IPF risk-allele at MUC5B showed an apparent protective effect against COVID-19 hospitalization only in older adults (OR 0.86, [95% CI 0.73-1.00], P = 2.99 x 10(-2)) . Interpretation: The strongest genetic determinant of IPF, rs35705950 at MUC5B, seems to confer protection against COVID-19, whereas the combined effect of all other IPF risk loci seem to confer risk of COVID-19 severity. The observed effect of rs35705950 could either be due to protective effects of mucin over-produc-tion on the airways or a consequence of selection bias due to (1) a patient group that is heavily enriched for the rs35705950 T undertaking strict self-isolation and/or (2) due to survival bias of the rs35705950 non-IPF risk allele carriers. Due to the diverse impact of IPF causal variants on SARS-CoV-2 infection, with a possible selection bias as an explanation, further investigation is needed to address this apparent paradox between variance at MUC5B and other IPF genetic risk factors. (C) 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)Peer reviewe

    Outcomes following trauma laparotomy for hypotensive trauma patients: A UK military and civilian perspective.

    Get PDF
    BACKGROUND: The management of trauma patients has changed radically in the last decade, and studies have shown overall improvements in survival. However, reduction in mortality for the many may obscure a lack of progress in some high-risk patients. We sought to examine the outcomes for hypotensive patients requiring laparotomy in UK military and civilian cohorts. METHODS: We undertook a review of two prospectively maintained trauma databases: the UK Joint Theatre Trauma Registry for the military cohort (February 4, 2003, to September 21, 2014) and the trauma registry of the Royal London Hospital major trauma center (January 1, 2012, to January 1, 2017) for civilian patients. Adults undergoing trauma laparotomy within 90 minutes of arrival at the emergency department (ED) were included. RESULTS: Hypotension was present on arrival at the ED in 155 (20.4%) of 761 military patients. Mortality was higher in hypotensive casualties (25.8% vs. 9.7% in normotensive casualties; p < 0.001). Hypotension was present on arrival at the ED in 63 (35.7%) of 176 civilian patients. Mortality was higher in hypotensive patients (47.6% vs. 12.4% in normotensive patients; p < 0.001). In both cohorts of hypotensive patients, neither the average injury severity, the prehospital time, the ED arrival systolic blood pressure, nor mortality rate changed significantly during the study period. CONCLUSIONS: Despite improvements in survival after trauma for patients overall, the mortality for patients undergoing laparotomy who arrive at the ED with hypotension has not changed and appears stubbornly resistant to all efforts. Specific enquiry and research should continue to be directed at this high-risk group of patients. LEVEL OF EVIDENCE: Prognostic/Epidemiologic, level IV

    Forced vital capacity trajectories in patients with idiopathic pulmonary fibrosis: a secondary analysis of a multicentre, prospective, observational cohort

    Get PDF
    BACKGROUND: Idiopathic pulmonary fibrosis is a progressive fibrotic lung disease with a variable clinical trajectory. Decline in forced vital capacity (FVC) is the main indicator of progression; however, missingness prevents long-term analysis of patterns in lung function. We aimed to identify distinct clusters of lung function trajectory among patients with idiopathic pulmonary fibrosis using machine learning techniques. METHODS: We did a secondary analysis of longitudinal data on FVC collected from a cohort of patients with idiopathic pulmonary fibrosis from the PROFILE study; a multicentre, prospective, observational cohort study. We evaluated the imputation performance of conventional and machine learning techniques to impute missing data and then analysed the fully imputed dataset by unsupervised clustering using self-organising maps. We compared anthropometric features, genomic associations, serum biomarkers, and clinical outcomes between clusters. We also performed a replication of the analysis on data from a cohort of patients with idiopathic pulmonary fibrosis from an independent dataset, obtained from the Chicago Consortium. FINDINGS: 415 (71%) of 581 participants recruited into the PROFILE study were eligible for further analysis. An unsupervised machine learning algorithm had the lowest imputation error among tested methods, and self-organising maps identified four distinct clusters (1-4), which was confirmed by sensitivity analysis. Cluster 1 comprised 140 (34%) participants and was associated with a disease trajectory showing a linear decline in FVC over 3 years. Cluster 2 comprised 100 (24%) participants and was associated with a trajectory showing an initial improvement in FVC before subsequently decreasing. Cluster 3 comprised 113 (27%) participants and was associated with a trajectory showing an initial decline in FVC before subsequent stabilisation. Cluster 4 comprised 62 (15%) participants and was associated with a trajectory showing stable lung function. Median survival was shortest in cluster 1 (2·87 years [IQR 2·29-3·40]) and cluster 3 (2·23 years [1·75-3·84]), followed by cluster 2 (4·74 years [3·96-5·73]), and was longest in cluster 4 (5·56 years [5·18-6·62]). Baseline FEV1 to FVC ratio and concentrations of the biomarker SP-D were significantly higher in clusters 1 and 3. Similar lung function clusters with some shared anthropometric features were identified in the replication cohort. INTERPRETATION: Using a data-driven unsupervised approach, we identified four clusters of lung function trajectory with distinct clinical and biochemical features. Enriching or stratifying longitudinal spirometric data into clusters might optimise evaluation of intervention efficacy during clinical trials and patient management. FUNDING: National Institute for Health and Care Research, Medical Research Council, and GlaxoSmithKline

    Genome-Wide Association Study of Susceptibility to Idiopathic Pulmonary Fibrosis

    Get PDF
    Rationale: Idiopathic pulmonary fibrosis (IPF) is a complex lung disease characterised by scarring of the lung that is believed to result from an atypical response to injury of the epithelium. Genome-wide association studies have reported signals of association implicating multiple pathways including host defence, telomere maintenance, signalling and cell-cell adhesion. Objectives: To improve our understanding of factors that increase IPF susceptibility by identifying previously unreported genetic associations. Methods and measurements: We conducted genome-wide analyses across three independent studies and meta-analysed these results to generate the largest genome-wide association study of IPF to date (2,668 IPF cases and 8,591 controls). We performed replication in two independent studies (1,456 IPF cases and 11,874 controls) and functional analyses (including statistical fine-mapping, investigations into gene expression and testing for enrichment of IPF susceptibility signals in regulatory regions) to determine putatively causal genes. Polygenic risk scores were used to assess the collective effect of variants not reported as associated with IPF. Main results: We identified and replicated three new genome-wide significant (P<5×10−8) signals of association with IPF susceptibility (associated with altered gene expression of KIF15, MAD1L1 and DEPTOR) and confirmed associations at 11 previously reported loci. Polygenic risk score analyses showed that the combined effect of many thousands of as-yet unreported IPF susceptibility variants contribute to IPF susceptibility. Conclusions: The observation that decreased DEPTOR expression associates with increased susceptibility to IPF, supports recent studies demonstrating the importance of mTOR signalling in lung fibrosis. New signals of association implicating KIF15 and MAD1L1 suggest a possible role of mitotic spindle-assembly genes in IPF susceptibility

    Dean Baldwin : Attempt at a Inventory = Tentative d'inventaire

    No full text

    Understanding the genetic basis of disease endotypes in idiopathic pulmonary fibrosis

    Full text link
    Idiopathic pulmonary fibrosis (IPF) is a rare, incurable disease of unknown cause characterised by progressive scarring of the lungs. The prognosis of IPF is poor with a median survival time of approximately 4 years and current treatment options are limited. The aim of the analyses in this thesis was to utilise genomic and transcriptomic data to improve the understanding of the pathogenesis of IPF, which could aid drug development and lead to improvements in treatments. This thesis describes the first genetic analyses of the age at which IPF is first developed. First, genome-wide association studies were performed to identify common genetic variants that are associated with the age-of-onset of IPF. Following this, gene-based collapsing analyses were performed to investigate the role of rare genetic variation in the age-of-onset of IPF. These analyses highlighted some suggestively significant genes of potential interest as well as some important factors to consider when studying this phenotype. A series of transcriptomic analyses were conducted to identify groups of IPF patients that could represent endotypes of the disease. New bioinformatics methods were utilised in these analyses to combine and cluster multiple datasets. This approach allowed for the largest transcriptomic cluster analysis in IPF to-date to be performed, which revealed three distinct groups of patients with IPF. These findings were consistent with the theory of multiple endotypes of IPF; significant differences in lung function and survival were found between clusters and gene enrichment analysis implicated metabolic changes, apoptosis, cell cycle and the immune system in the development of these potential IPF endotypes. Supervised machine learning was used to develop a gene expression-based classifier with the ability to assign patients with IPF to one of the three clusters. With further development, this classifier could be a useful clinical tool for outcome prediction and patient stratification in IPF.</p

    Genetic overlap between idiopathic pulmonary fibrosis and COVID−19

    No full text
    Genome-wide association studies (GWAS) of coronavirus disease 2019 (COVID-19) and idiopathic pulmonary fibrosis (IPF) have identified genetic loci associated with both traits, suggesting possible shared biological mechanisms. Using updated GWAS of COVID-19 and IPF, we evaluated the genetic overlap between these two diseases and identified four genetic loci (including one novel) with likely shared causal variants between severe COVID-19 and IPF. Although there was a positive genetic correlation between COVID-19 and IPF, two of these four shared genetic loci had an opposite direction of effect. IPF-associated genetic variants related to telomere dysfunction and spindle assembly showed no association with COVID-19 phenotypes. Together, these results suggest there are both shared and distinct biological processes driving IPF and severe COVID-19 phenotypes
    corecore