167 research outputs found
Cancer Patient T Cells Genetically Targeted to Prostate-Specific Membrane Antigen Specifically Lyse Prostate Cancer Cells and Release Cytokines in Response to Prostate-Specific Membrane Antigen
AbstractThe expression of immunoglobulin-based artificial receptors in normal T lymphocytes provides a means to target lymphocytes to cell surface antigens independently of major histocompatibility complex restriction. Such artificial receptors have been previously shown to confer antigen-specific tumoricidal properties in murine T cells. We constructed a novel ζ chain fusion receptor specific for prostate-specific membrane antigen (PSMA) termed Pz-1. PSMA is a cell-surface glycoprotein expressed on prostate cancer cells and the neovascular endothelium of multiple carcinomas. We show that primary T cells harvested from five of five patients with different stages of prostate cancer and transduced with the Pz-1 receptor readily lyse prostate cancer cells. Having established a culture system using fibroblasts that express PSMA, we next show that T cells expressing the Pz-1 receptor release cytokines in response to cell-bound PSMA. Furthermore, we show that the cytokine release is greatly augmented by B7.1-mediated costimulation. Thus, our findings support the feasibility of adoptive cell therapy by using genetically engineered T cells in prostate cancer patients and suggest that both CD4+ and CD8+ T lymphocyte functions can be synergistically targeted against tumor cells
Velocity-selective sublevel resonance of atoms with an array of current-carrying wires
Resonance transitions between the Zeeman sublevels of optically-polarized Rb
atoms traveling through a spatially periodic magnetic field are investigated in
a radio-frequency (rf) range of sub-MHz. The atomic motion induces the
resonance when the Zeeman splitting is equal to the frequency at which the
moving atoms feel the magnetic field oscillating. Additional temporal
oscillation of the spatially periodic field splits a motion-induced resonance
peak into two by an amount of this oscillation frequency. At higher oscillation
frequencies, it is more suitable to consider that the resonance is mainly
driven by the temporal field oscillation, with its velocity-dependence or
Doppler shift caused by the atomic motion through the periodic field. A
theoretical description of motion-induced resonance is also given, with
emphasis on the translational energy change associated with the internal
transition.Comment: 7 pages, 3 figures, final versio
Correlation structure in nondipole photoionization
The nondipole parameters that characterize the angular disribution of the
photoelectrons from the 3d subshell of Cs are found to be altered qualitatively
by the inclusion of correlation in the form of interchannel coupling between
the and photoionization channels. A prominent
characteristic maximum is predicted only in the parameters for
photoionization, while the effect for is rather weak. The results
are obtained within the framework of the Generalized Random Phase Approximation
with Exchange (GRPAE), which in addition to the RPAE effects takes into account
the rearrangement of all atomic electrons due to the creation of a 3d vacancy
Design, Commissioning and Performance of the PIBETA Detector at PSI
We describe the design, construction and performance of the PIBETA detector
built for the precise measurement of the branching ratio of pion beta decay,
pi+ -> pi0 e+ nu, at the Paul Scherrer Institute. The central part of the
detector is a 240-module spherical pure CsI calorimeter covering 3*pi sr solid
angle. The calorimeter is supplemented with an active collimator/beam degrader
system, an active segmented plastic target, a pair of low-mass cylindrical wire
chambers and a 20-element cylindrical plastic scintillator hodoscope. The whole
detector system is housed inside a temperature-controlled lead brick enclosure
which in turn is lined with cosmic muon plastic veto counters. Commissioning
and calibration data were taken during two three-month beam periods in
1999/2000 with pi+ stopping rates between 1.3*E3 pi+/s and 1.3*E6 pi+/s. We
examine the timing, energy and angular detector resolution for photons,
positrons and protons in the energy range of 5-150 MeV, as well as the response
of the detector to cosmic muons. We illustrate the detector signatures for the
assorted rare pion and muon decays and their associated backgrounds.Comment: 117 pages, 48 Postscript figures, 5 tables, Elsevier LaTeX, submitted
to Nucl. Instrum. Meth.
Early above- and below-ground responses of subboreal conifer seedlings to various levels of deciduous canopy removal
We examined the growth of understory conifers, following partial or complete deciduous canopy removal, in a field study established in two regions in Canada. In central British Columbia, we studied the responses of three species (Pseudotsuga menziesii var. glauca (Beissn.) Franco, Picea glauca (Moench) Voss x Picea engelmannii Parry ex Engelm., and Abies lasiocarpa (Hook.) Nutt.), and in northwestern Quebec, we studied one species (Abies balsamea (L.) Mill.). Stem and root diameter and height growth were measured 5 years before and 3 years after harvesting. Both root and stem diameter growth increased sharply following release but seedlings showed greater root growth, suggesting that in the short term, improvement in soil resource capture and transport, and presumably stability, may be more important than an increase in stem diameter and height growth. Response was strongly size dependent, which appears to reflect greater demand for soil resources as well as higher light levels and greater tree vigour before release for taller individuals. Growth ratios could not explain the faster response generally attributed to true fir species or the unusual swift response of spruces. Good prerelease vigour of spruces, presumably favoured by deciduous canopies, could explain their rapid response to release
Further studies on a hybrid cell-surface antigen associated with human chromosome 11 using a monoclonal antibody
A monoclonal antibody has been obtained that recognizes an antigen encoded by human chromosome 11. We present evidence that this monoclonal antibody recognizes the same or a similar antigenic activity as that previously called a 1 . Genetic information necessary for a 1 expression and recognition by the monoclonal antibody both map to 11p13 → 11pter. Mutants that have lost a 1 are no longer recognized by the monoclonal antibody. The macroglycolipid fraction of human erythrocyte membranes which contains the a 1 antigenic activity is able to convert antigen-negative Chinese hamster ovary cells into cells which are killed by the monoclonal antibody plus complement.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/45556/1/11188_2005_Article_BF01543049.pd
Cichlid biogeography: comment and review
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/72313/1/j.1467-2979.2004.00148.x.pd
The first Hubble diagram and cosmological constraints using superluminous supernovae
This paper has gone through internal review by the DES collaboration.
It has Fermilab preprint number 19-115-AE and DES
publication number 13387. We acknowledge support from EU/FP7-
ERC grant 615929. RCN would like to acknowledge support from
STFC grant ST/N000688/1 and the Faculty of Technology at the
University of Portsmouth. LG was funded by the European Union’s
Horizon 2020 Framework Programme under the Marie Skłodowska-
Curie grant agreement no. 839090. This work has been partially
supported by the Spanish grant PGC2018-095317-B-C21 within
the European Funds for Regional Development (FEDER). Funding
for the DES Projects has been provided by the U.S. Department
of Energy, the U.S. National Science Foundation, the Ministry
of Science and Education of Spain, the Science and Technology
Facilities Council of the United Kingdom, the Higher Education
Funding Council for England, the National Center for Supercomputing
Applications at the University of Illinois at Urbana-Champaign,
the Kavli Institute of Cosmological Physics at the University of
Chicago, the Center for Cosmology and Astro-Particle Physics at
the Ohio State University, the Mitchell Institute for Fundamental
Physics and Astronomy at Texas A&M University, Financiadora
de Estudos e Projetos, Fundac¸ ˜ao Carlos Chagas Filho de Amparo
`a Pesquisa do Estado do Rio de Janeiro, Conselho Nacional de
Desenvolvimento Cient´ıfico e Tecnol´ogico and the Minist´erio da
Ciˆencia, Tecnologia e Inovac¸ ˜ao, the Deutsche Forschungsgemeinschaft,
and the Collaborating Institutions in the Dark Energy Survey.
The Collaborating Institutions are Argonne National Laboratory, the
University of California at Santa Cruz, the University of Cambridge,
Centro de Investigaciones Energ´eticas, Medioambientales y Tecnol
´ogicas-Madrid, the University of Chicago, University College
London, the DES-Brazil Consortium, the University of Edinburgh,
the Eidgen¨ossische Technische Hochschule (ETH) Z¨urich, Fermi
NationalAccelerator Laboratory, theUniversity of Illinois atUrbana-
Champaign, the Institut de Ci`encies de l’Espai (IEEC/CSIC), the
Institut de F´ısica d’Altes Energies, Lawrence Berkeley National
Laboratory, the Ludwig-Maximilians Universit¨at M¨unchen and the
associated Excellence Cluster Universe, the University of Michigan,
the National Optical Astronomy Observatory, the University of
Nottingham, The Ohio State University, the University of Pennsylvania,
the University of Portsmouth, SLAC National Accelerator
Laboratory, Stanford University, the University of Sussex, Texas
A&M University, and the OzDES Membership Consortium. Based
in part on observations at Cerro Tololo Inter-American Observatory,
National Optical Astronomy Observatory, which is operated by the
Association of Universities for Research in Astronomy (AURA) under a cooperative agreement with the National Science Foundation.
The DES data management system is supported by the
National Science Foundation under grant numbers AST-1138766
and AST-1536171. The DES participants from Spanish institutions
are partially supported by MINECO under grants AYA2015-
71825, ESP2015-66861, FPA2015-68048, SEV-2016-0588, SEV-
2016-0597, and MDM-2015-0509, some of which include ERDF
funds from the European Union. IFAE is partially funded by the
CERCA program of the Generalitat de Catalunya. Research leading
to these results has received funding from the European Research
Council under the European Union Seventh Framework Programme
(FP7/2007-2013) including ERC grant agreements 240672, 291329,
and 306478.We acknowledge support from the Australian Research
Council Centre of Excellence for All-skyAstrophysics (CAASTRO),
through project number CE110001020, and the Brazilian Instituto
Nacional de Ciˆencia e Tecnologia (INCT) e-Universe (CNPq grant
465376/2014-2).
This paper has been authored by Fermi Research Alliance, LLC
under Contract No.DE-AC02-07CH11359 with theU.S.Department
of Energy, Office of Science, Office of High Energy Physics. The
United States Government retains and the publisher, by accepting
the paper for publication, acknowledges that the United States
Government retains a non-exclusive, paid-up, irrevocable, worldwide
license to publish or reproduce the published form of this paper,
or allow others to do so, for United States Government purposes.We present the first Hubble diagram of superluminous supernovae (SLSNe) out to a redshift of two, together with constraints
on the matter density, M, and the dark energy equation-of-state parameter, w(≡p/ρ). We build a sample of 20 cosmologically
useful SLSNe I based on light curve and spectroscopy quality cuts. We confirm the robustness of the peak–decline SLSN I
standardization relation with a larger data set and improved fitting techniques than previous works. We then solve the SLSN
model based on the above standardization via minimization of the χ2 computed from a covariance matrix that includes statistical
and systematic uncertainties. For a spatially flat cold dark matter ( CDM) cosmological model, we find M = 0.38+0.24
−0.19,
with an rms of 0.27 mag for the residuals of the distance moduli. For a w0waCDM cosmological model, the addition of SLSNe I
to a ‘baseline’ measurement consisting of Planck temperature together with Type Ia supernovae, results in a small improvement
in the constraints of w0 and wa of 4 per cent.We present simulations of future surveys with 868 and 492 SLSNe I (depending on
the configuration used) and show that such a sample can deliver cosmological constraints in a flat CDM model with the same
precision (considering only statistical uncertainties) as current surveys that use Type Ia supernovae, while providing a factor of
2–3 improvement in the precision of the constraints on the time variation of dark energy, w0 and wa. This paper represents the
proof of concept for superluminous supernova cosmology, and demonstrates they can provide an independent test of cosmology
in the high-redshift (z > 1) universe.EU/FP7-ERC grant 615929STFC grant ST/N000688/1Faculty of Technology at the
University of PortsmouthEuropean Union’s
Horizon 2020 Framework Programme under the Marie Skłodowska-
Curie grant agreement no. 839090Spanish grant PGC2018-095317-B-C21 within
the European Funds for Regional Development (FEDER)U.S. Department
of EnergyU.S. National Science FoundationMinistry
of Science and Education of SpainScience and Technology
Facilities Council of the United KingdomHigher Education
Funding Council for EnglandNational Center for Supercomputing
Applications at the University of Illinois at Urbana-Champaign,Kavli Institute of Cosmological Physics at the University of
ChicagoCenter for Cosmology and Astro-Particle Physics at
the Ohio State UniversityMitchell Institute for Fundamental
Physics and Astronomy at Texas A&M University, Financiadora
de Estudos e Projetos, Fundacão Carlos Chagas Filho de Amparo
`a Pesquisa do Estado do Rio de Janeiro, Conselho Nacional de
Desenvolvimento Científico e Tecnológico and the Ministério da
Ciencia, Tecnologia e InovacãoDeutsche ForschungsgemeinschaftCollaborating Institutions in the Dark Energy Survey.National Science Foundation under grant numbers AST-1138766
and AST-1536171.T MINECO under grants AYA2015-
71825, ESP2015-66861, FPA2015-68048, SEV-2016-0588, SEV-
2016-0597, and MDM-2015-0509, some of which include ERDF
funds from the European Union.CERCA program of the Generalitat de Catalunya.European Research
Council under the European Union Seventh Framework Programme
(FP7/2007-2013) including ERC grant agreements 240672, 291329,
and 306478.Australian Research
Council Centre of Excellence for All-skyAstrophysics (CAASTRO),
through project number CE110001020Brazilian Instituto
Nacional de Ciˆencia e Tecnologia (INCT) e-Universe (CNPq grant
465376/2014-2)Fermi Research Alliance, LLC
under Contract No.DE-AC02-07CH11359 with theU.S.Department
of Energy, Office of Science, Office of High Energy Physic
Measurement of the splashback feature around SZ-selected Galaxy clusters with DES, SPT, and ACT
We present a detection of the splashback feature around galaxy clusters selected using the Sunyaev–Zel’dovich (SZ) signal. Recent measurements of the splashback feature around optically selected galaxy clusters have found that the splashback radius, rsp, is smaller than predicted by N-body simulations. A possible explanation for this discrepancy is that rsp inferred from the observed radial distribution of galaxies is affected by selection effects related to the optical cluster-finding algorithms. We test this possibility by measuring the splashback feature in clusters selected via the SZ effect in data from the South Pole Telescope SZ survey and the Atacama Cosmology Telescope Polarimeter survey. The measurement is accomplished by correlating these cluster samples with galaxies detected in the Dark Energy Survey Year 3 data. The SZ observable used to select clusters in this analysis is expected to have a tighter correlation with halo mass and to be more immune to projection effects and aperture-induced biases, potentially ameliorating causes of systematic error for optically selected clusters. We find that the measured rsp for SZ-selected clusters is consistent with the expectations from simulations, although the small number of SZ-selected clusters makes a precise comparison difficult. In agreement with previous work, when using optically selected redMaPPer clusters with similar mass and redshift distributions, rsp is ∼2σ smaller than in the simulations. These results motivate detailed investigations of selection biases in optically selected cluster catalogues and exploration of the splashback feature around larger samples of SZ-selected clusters. Additionally, we investigate trends in the galaxy profile and splashback feature as a function of galaxy colour, finding that blue galaxies have profiles close to a power law with no discernible splashback feature, which is consistent with them being on their first infall into the cluster
- …