3,326 research outputs found

    Multi-Photon Quantum Key Distribution Based on Double-Lock Encryption

    Full text link
    This paper presents a multi-stage, multi-photon quantum key distribution protocol based on the double-lock cryptography. It exploits the asymmetry in the detection strategies between the legitimate users and the eavesdropper. The security analysis of the protocol is presented with coherent states under the intercept-resend attack, the photon number splitting attack, and the man-in-the-middle attack. It is found that the mean photon number can be much larger than one. This complements the recent interest in multi-photon quantum communication protocols that require a pre-shared key between the legitimate users

    Operator-sum representation of time-dependent density operators and its applications

    Full text link
    We show that any arbitrary time-dependent density operator of an open system can always be described in terms of an operator-sum representation regardless of its initial condition and the path of its evolution in the state space, and we provide a general expression of Kraus operators for arbitrary time-dependent density operator of an NN-dimensional system. Moreover, applications of our result are illustrated through several examples.Comment: 4 pages, no figure, brief repor

    Neutrino Mass Sum-rules in Flavor Symmetry Models

    Full text link
    Four different neutrino mass sum-rules have been analyzed: these frequently arise in flavor symmetry models based on the groups A_4, S_4 or T', which are often constructed to generate tri-bimaximal mixing. In general, neutrino mass can be probed in three different ways, using beta decay, neutrino-less double beta decay and cosmology. The general relations between the corresponding three neutrino mass observables are well known. The sum-rules lead to relations between the observables that are different from the general case and therefore only certain regions in parameter space are allowed. Plots of the neutrino mass observables are given for the sum-rules, and analytical expressions for the observables are provided. The case of deviations from the exact sum-rules is also discussed, which can introduce new features. The sum-rules could be used to distinguish some of the many models in the literature, which all lead to the same neutrino oscillation results.Comment: 22 pages, 10 figures; matches the version published in Nuclear Physics

    Tri-Bimaximal Neutrino Mixing from Discrete Symmetry in Extra Dimensions

    Full text link
    We discuss a particularly symmetric model of neutrino mixings where, with good accuracy, the atmospheric mixing angle theta_{23} is maximal, theta_{13}=0 and the solar angle satisfies sin^2(theta_{12})=1/3 (Harrison-Perkins-Scott (HPS) matrix). The discrete symmetry A_4 is a suitable symmetry group for the realization of this type of model. We construct a model where the HPS matrix is exactly obtained in a first approximation without imposing ad hoc relations among parameters. The crucial issue of the required VEV alignment in the scalar sector is discussed and we present a natural solution of this problem based on a formulation with extra dimensions. We study the corrections from higher dimensionality operators allowed by the symmetries of the model and discuss the conditions on the cut-off scales and the VEVs in order for these corrections to be completely under control. Finally, the observed hierarchy of charged lepton masses is obtained by assuming a larger flavour symmetry. We also show that, under general conditions, a maximal theta_{23} can never arise from an exact flavour symmetry.Comment: 24 pages, 1 figure, misprints corrected and references adde

    Higher Spin Black Holes from CFT

    Full text link
    Higher spin gravity in three dimensions has explicit black holes solutions, carrying higher spin charge. We compute the free energy of a charged black hole from the holographic dual, a 2d CFT with extended conformal symmetry, and find exact agreement with the bulk thermodynamics. In the CFT, higher spin corrections to the free energy can be calculated at high temperature from correlation functions of W-algebra currents.Comment: 24 pages; v2 reference adde

    Quantum uniqueness

    Full text link
    In the classical world one can construct two identical systems which have identical behavior and give identical measurement results. We show this to be impossible in the quantum domain. We prove that after the same quantum measurement two different quantum systems cannot yield always identical results, provided the possible measurement results belong to a non orthogonal set. This is interpreted as quantum uniqueness - a quantum feature which has no classical analog. Its tight relation with objective randomness of quantum measurements is discussed.Comment: Presented at 4th Feynman festival, June 22-26, 2009, in Olomouc, Czech Republic

    New high-pressure phase of HfTiO4 and ZrTiO4 ceramics

    Full text link
    We studied the high-pressure effects on the crystalline structure of monoclinic HfTiO4 and ZrTiO4. We found that the compressibility of these ceramics is highly non-isotropic, being the b-axis the most compressible one. In addition, the a-axis is found to have a small and negative compressibility. At 2.7 GPa (10.7 GPa) we discovered the onset of an structural phase transition in HfTiO4 (ZrTiO4), coexisting the low- and high-pressure phases in a broad pressure range. The new high-pressure phase has a monoclinic structure which involves an increase in the Ti-O coordination and a collapse of the cell volume. The equation of state for the low-pressure phase is also determined.Comment: 16 pages, 5 figures, 26 references, Article in Pres

    Operator entanglement of two-qubit joint unitary operations revisited: Schmidt number approach

    Full text link
    Operator entanglement of two-qubit joint unitary operations is revisited. Schmidt number is an important attribute of a two-qubit unitary operation, and may have connection with the entanglement measure of the unitary operator. We found the entanglement measure of two-qubit unitary operators is classified by the Schmidt number of the unitary operators. The exact relation between the operator entanglement and the parameters of the unitary operator is clarified too.Comment: To appear in the Brazilian Journal of Physic

    A note on entropic uncertainty relations of position and momentum

    Full text link
    We consider two entropic uncertainty relations of position and momentum recently discussed in literature. By a suitable rescaling of one of them, we obtain a smooth interpolation of both for high-resolution and low-resolution measurements respectively. Because our interpolation has never been mentioned in literature before, we propose it as a candidate for an improved entropic uncertainty relation of position and momentum. Up to now, the author has neither been able to falsify nor prove the new inequality. In our opinion it is a challenge to do either one.Comment: 2 pages, 2 figures, 2 references adde
    corecore