19,955 research outputs found

    Breaking democracy with non renormalizable mass terms

    Get PDF
    The exact democratic structure for the quark mass matrix, resulting from the action of the family symmetry group A3L×A3RA_{3L}\times A_{3R}, is broken by the vaccum expectation values of heavy singlet fields appearing in non renormalizable dimension 6 operators. Within this specific context of breaking of the family symmetry we formulate a very simple ansatz which leads to correct quark masses and mixings.Comment: 6 pages, RevTe

    Special Symmetric Quark Mass Matrices

    Get PDF
    We give a procedure to construct a special class of symmetric quark mass matrices near the democratic limit of equal Yukawa couplings for each sector. It is shown that within appropriate weak-bases, the requirements of symmetry and arg(det[M])=0 are very strong conditions, that necessarily lead to a Cabibbo angle given by |V_us|=Sqrt[md/ms], and to |V_cb|~ms/mb, in first order. In addition, we prove that the recently classified ansatze, which also reproduce these mixing relations, and which were based on the hypothesis of the Universal Strength for Yukawa couplings, where all Yukawa couplings have equal moduli while the flavour dependence is only in their phases, are, in fact, particular cases of the generalized symmetric quark mass matrix ansatze we construct here. In an excellent numerical example, the experimental values on all quark mixings and masses are accommodated, and the CP violation phase parameter is shown to be crucially dependent on the values of mu and V_us.Comment: 13 pages, LaTe

    A Highly Predictive Ansatz for Leptonic Mixing and CP Violation

    Full text link
    We suggest a simple highly predictive ansatz for charged lepton and light neutrino mass matrices, based on the assumption of universality of Yukawa couplings. Using as input the charged lepton masses and light neutrino masses, the six parameters characterizing the leptonic mixing matrix VPMNSV_{PMNS}, are predicted in terms of a single phase ϕ\phi, which takes a value around ϕ=π2\phi={\frac{\pi}{2}}. Correlations among variuos physical quantities are obtained, in particular V13PMNSV^{PMNS}_{13} is predicted as a function of Δm212{\Delta}m^2_{21}, Δm312{\Delta}m^2_{31} and sin2(θsol)\sin^2(\theta_{sol}), and restricted to the range 0.167<V13PMNS<0.1790.167<|V^{PMNS}_{13}|<0.179.Comment: 9 pages, 4 figure

    Symmetries, Large Leptonic Mixing and a Fourth Generation

    Full text link
    We show that large leptonic mixing occurs most naturally in the framework of the Sandard Model just by adding a fourth generation. One can then construct a small Z4Z_4 discrete symmetry, instead of the large S4L×S4RS_{4L}\times S_{4R}, which requires that the neutrino as well as the charged lepton mass matrices be proportional to a 4×44\times 4 democratic mass matrix, where all entries are equal to unity. Without considering the see-saw mechanism, or other more elaborate extensions of the SM, and contrary to the case with only 3 generations, large leptonic mixing is obtained when the symmetry is broken.Comment: 6 pages, ReVTeX, no figure

    Regular black holes in f(G)f(G) gravity

    Full text link
    In this work, we study the possibility of generalizing solutions of regular black holes with an electric charge, constructed in general relativity, for the f(G)f(G) theory, where GG is the Gauss-Bonnet invariant. This type of solution arises due to the coupling between gravitational theory and nonlinear electrodynamics. We construct the formalism in terms of a mass function and it results in different gravitational and electromagnetic theories for which mass function. The electric field of these solutions are always regular and the strong energy condition is violated in some region inside the event horizon. For some solutions, we get an analytical form for the f(G)f(G) function. Imposing the limit of some constant going to zero in the f(G)f(G) function we recovered the linear case, making the general relativity a particular case.Comment: 22 pages, 25 figures.Version published in EPJ
    corecore