443 research outputs found

    All-or-none switching of transcriptional activity on single DNA molecules caused by a discrete conformational transition

    Get PDF
    Recently, it has been confirmed that long duplex DNA molecules with sizes larger than several tens of kilo-base pairs (kbp), exhibit a discrete conformational transition from an elongated coil state to a compact globule state upon the addition of various kinds of chemical species that usually induce DNA condensation. In this study, we performed a single-molecule observation on a large DNA, Lambda ZAP II DNA (ca. 41 kbp), in a solution containing RNA polymerase and substrates along with spermine, a tetravalent cation, at different concentrations, by use of fluorescence staining of both DNA and RNA. We found that transcription, or RNA production, is completely inhibited in the compact state, but is actively performed in the unfolded coil state. Such an all-or-none effect on transcriptional activity induced by the discrete conformational transition of single DNA molecules is discussed in relation to the mechanism of the regulation of large-scale genetic activity.Comment: 14 pages, 2 figure

    Critical exponents for random knots

    Full text link
    The size of a zero thickness (no excluded volume) polymer ring is shown to scale with chain length NN in the same way as the size of the excluded volume (self-avoiding) linear polymer, as NνN^{\nu}, where ν0.588\nu \approx 0.588. The consequences of that fact are examined, including sizes of trivial and non-trivial knots.Comment: 4 pages, 0 figure

    Critical changes in hypothalamic gene networks in response to pancreatic cancer as found by single-cell RNA sequencing

    Get PDF
    OBJECTIVE: Cancer cachexia is a devastating chronic condition characterized by involuntary weight loss, muscle wasting, abnormal fat metabolism, anorexia, and fatigue. However, the molecular mechanisms underlying this syndrome remain poorly understood. In particular, the hypothalamus may play a central role in cachexia, given that it has direct access to peripheral signals because of its anatomical location and attenuated blood–brain barrier. Furthermore, this region has a critical role in regulating appetite and metabolism. METHODS: To provide a detailed analysis of the hypothalamic response to cachexia, we performed single-cell RNA-seq combined with RNA-seq of the medial basal hypothalamus (MBH) in a mouse model for pancreatic cancer. RESULTS: We found many cell type-specific changes, such as inflamed endothelial cells, stressed oligodendrocyes and both inflammatory and moderating microglia. Lcn2, a newly discovered hunger suppressing hormone, was the highest induced gene. Interestingly, cerebral treatment with LCN2 not only induced many of the observed molecular changes in cachexia but also affected gene expression in food-intake decreasing POMC neurons. In addition, we found that many of the cachexia-induced molecular changes found in the hypothalamus mimic those at the primary tumor site. CONCLUSION: Our data reveal that multiple cell types in the MBH are affected by tumor-derived factors or host factors that are induced by tumor growth, leading to a marked change in the microenvironment of neurons critical for behavioral, metabolic, and neuroendocrine outputs dysregulated during cachexia. The mechanistic insights provided in this study explain many of the clinical features of cachexia and will be useful for future therapeutic development

    Radial Construction of an Arterial Wall

    Get PDF
    SummarySome of the most serious diseases involve altered size and structure of the arterial wall. Elucidating how arterial walls are built could aid understanding of these diseases, but little is known about how concentric layers of muscle cells and the outer adventitial layer are assembled and patterned around endothelial tubes. Using histochemical, clonal, and genetic analysis in mice, here we show that the pulmonary artery wall is constructed radially, from the inside out, by two separate but coordinated processes. One is sequential induction of successive cell layers from surrounding mesenchyme. The other is controlled invasion of outer layers by inner layer cells through developmentally regulated cell reorientation and radial migration. We propose that a radial signal gradient controls these processes and provide evidence that PDGF-B and at least one other signal contribute. Modulation of such radial signaling pathways may underlie vessel-specific differences and pathological changes in arterial wall size and structure.Video Abstrac

    Generation of human motor units with functional neuromuscular junctions in microfluidic devices

    Get PDF
    Neuromuscular junctions (NMJs) are specialized synapses between the axon of the lower motor neuron and the muscle facilitating the engagement of muscle contraction. In motor neuron disorders, such as amyotrophic lateral sclerosis (ALS) and spinal muscular atrophy (SMA), NMJs degenerate, resulting in muscle atrophy and progressive paralysis. The underlying mechanism of NMJ degeneration is unknown, largely due to the lack of translatable research models. This study aimed to create a versatile and reproducible in vitro model of a human motor unit with functional NMJs. Therefore, human induced pluripotent stem cell (hiPSC)-derived motor neurons and human primary mesoangioblast (MAB)-derived myotubes were co-cultured in commercially available microfluidic devices. The use of fluidically isolated micro-compartments allows for the maintenance of cell-specific microenvironments while permitting cell-to-cell contact through microgrooves. By applying a chemotactic and volumetric gradient, the growth of motor neuron-neurites through the microgrooves promoting myotube interaction and the formation of NMJs were stimulated. These NMJs were identified immunocytochemically through co-localization of motor neuron presynaptic marker synaptophysin (SYP) and postsynaptic acetylcholine receptor (AChR) marker α-bungarotoxin (Btx) on myotubes and characterized morphologically using scanning electron microscopy (SEM). The functionality of the NMJs was confirmed by measuring calcium responses in myotubes upon depolarization of the motor neurons. The motor unit generated using standard microfluidic devices and stem cell technology can aid future research focusing on NMJs in health and disease

    Antagonism between Gdf6a and retinoic acid pathways controls timing of retinal neurogenesis and growth of the eye in zebrafish.

    Get PDF
    Maintaining neurogenesis in growing tissues requires a tight balance between progenitor cell proliferation and differentiation. In the zebrafish retina, neuronal differentiation proceeds in two stages with embryonic retinal progenitor cells (RPCs) of the central retina accounting for the first rounds of differentiation, and stem cells from the ciliary marginal zone (CMZ) being responsible for late neurogenesis and growth of the eye. In this study, we analyse two mutants with small eyes that display defects during both early and late phases of retinal neurogenesis. These mutants carry lesions in gdf6a, a gene encoding a BMP family member previously implicated in dorsoventral patterning of the eye. We show that gdf6a mutant eyes exhibit expanded retinoic acid (RA) signalling and demonstrate that exogenous activation of this pathway in wild-type eyes inhibits retinal growth, generating small eyes with a reduced CMZ and fewer proliferating progenitors, similar to gdf6a mutants. We provide evidence that RA regulates the timing of RPC differentiation by promoting cell cycle exit. Furthermore, reducing RA signalling in gdf6a mutants re-establishes appropriate timing of embryonic retinal neurogenesis and restores putative stem and progenitor cell populations in the CMZ. Together, our results support a model in which dorsally expressed gdf6a limits RA pathway activity to control the transition from proliferation to differentiation in the growing eye

    PICH promotes sister chromatid disjunction and co-operates with topoisomerase II in mitosis

    Get PDF
    PICH is a SNF2 family DNA translocase that binds to ultra-fine DNA bridges (UFBs) in mitosis. Numerous roles for PICH have been proposed from protein depletion experiments, but a consensus has failed to emerge. Here, we report that deletion of PICH in avian cells causes chromosome structural abnormalities, and hypersensitivity to an inhibitor of Topoisomerase II (Topo II), ICRF-193. ICRF-193-treated PICH-/- cells undergo sister chromatid non-disjunction in anaphase, and frequently abort cytokinesis. PICH co-localises with Topo IIα on UFBs and at the ribosomal DNA locus, and the timely resolution of both structures depends on the ATPase activity of PICH. Purified PICH protein strongly stimulates the catalytic activity of Topo II in vitro. Consistent with this, a human PICH-/- cell line exhibits chromosome instability and chromosome condensation and decatenation defects similar to those of ICRF-193-treated cells. We propose that PICH and Topo II cooperate to prevent chromosome missegregation events in mitosis

    Is Persistent Motor or Vocal Tic Disorder a Milder Form of Tourette Syndrome?

    Get PDF
    BACKGROUND: Persistent motor or vocal tic disorder (PMVT) has been hypothesized to be a forme fruste of Tourette syndrome (TS). Although the primary diagnostic criterion for PMVT (presence of motor or vocal tics, but not both) is clear, less is known about its clinical presentation. OBJECTIVE: The goals of this study were to compare the prevalence and number of comorbid psychiatric disorders, tic severity, age at tic onset, and family history for TS and PMVT. METHODS: We analyzed data from two independent cohorts using generalized linear equations and confirmed our findings using meta‐analyses, incorporating data from previously published literature. RESULTS: Rates of obsessive–compulsive disorder (OCD) and attention deficit hyperactivity disorder (ADHD) were lower in PMVT than in TS in all analyses. Other psychiatric comorbidities occurred with similar frequencies in PMVT and TS in both cohorts, although meta‐analyses suggested lower rates of most psychiatric disorders in PMVT compared with TS. ADHD and OCD increased the odds of comorbid mood, anxiety, substance use, and disruptive behaviors, and accounted for observed differences between PMVT and TS. Age of tic onset was approximately 2 years later, and tic severity was lower in PMVT than in TS. First‐degree relatives had elevated rates of TS, PMVT, OCD, and ADHD compared with population prevalences, with rates of TS equal to or greater than PMVT rates. CONCLUSIONS: Our findings support the hypothesis that PMVT and TS occur along a clinical spectrum in which TS is a more severe and PMVT a less severe manifestation of a continuous neurodevelopmental tic spectrum disorder. © 2021 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Societ

    Parallel Chemical Genetic and Genome-Wide RNAi Screens Identify Cytokinesis Inhibitors and Targets

    Get PDF
    Cytokinesis involves temporally and spatially coordinated action of the cell cycle and cytoskeletal and membrane systems to achieve separation of daughter cells. To dissect cytokinesis mechanisms it would be useful to have a complete catalog of the proteins involved, and small molecule tools for specifically inhibiting them with tight temporal control. Finding active small molecules by cell-based screening entails the difficult step of identifying their targets. We performed parallel chemical genetic and genome-wide RNA interference screens in Drosophila cells, identifying 50 small molecule inhibitors of cytokinesis and 214 genes important for cytokinesis, including a new protein in the Aurora B pathway (Borr). By comparing small molecule and RNAi phenotypes, we identified a small molecule that inhibits the Aurora B kinase pathway. Our protein list provides a starting point for systematic dissection of cytokinesis, a direction that will be greatly facilitated by also having diverse small molecule inhibitors, which we have identified. Dissection of the Aurora B pathway, where we found a new gene and a specific small molecule inhibitor, should benefit particularly. Our study shows that parallel RNA interference and small molecule screening is a generally useful approach to identifying active small molecules and their target pathways
    corecore