15 research outputs found

    E. coli Nissle 1917 Affects Salmonella Adhesion to Porcine Intestinal Epithelial Cells

    Get PDF
    BACKGROUND: The probiotic Escherichia coli strain Nissle 1917 (EcN) has been shown to interfere in a human in vitro model with the invasion of several bacterial pathogens into epithelial cells, but the underlying molecular mechanisms are not known. METHODOLOGY/PRINCIPAL FINDINGS: In this study, we investigated the inhibitory effects of EcN on Salmonella Typhimurium invasion of porcine intestinal epithelial cells, focusing on EcN effects on the various stages of Salmonella infection including intracellular and extracellular Salmonella growth rates, virulence gene regulation, and adhesion. We show that EcN affects the initial Salmonella invasion steps by modulating Salmonella virulence gene regulation and Salmonella SiiE-mediated adhesion, but not extra- and intracellular Salmonella growth. However, the inhibitory activity of EcN against Salmonella invasion always correlated with EcN adhesion capacities. EcN mutants defective in the expression of F1C fimbriae and flagellae were less adherent and less inhibitory toward Salmonella invasion. Another E. coli strain expressing F1C fimbriae was also adherent to IPEC-J2 cells, and was similarly inhibitory against Salmonella invasion like EcN. CONCLUSIONS: We propose that EcN affects Salmonella adhesion through secretory components. This mechanism appears to be common to many E. coli strains, with strong adherence being a prerequisite for an effective reduction of SiiE-mediated Salmonella adhesion

    Rapid adaptation to microgravity in mammalian macrophage cells

    Get PDF
    Despite the observed severe effects of microgravity on mammalian cells, many astronauts have completed long term stays in space without suffering from severe health problems. This raises questions about the cellular capacity for adaptation to a new gravitational environment. The International Space Station (ISS) experiment TRIPLE LUX A, performed in the BIOLAB laboratory of the ISS COLUMBUS module, allowed for the first time the direct measurement of a cellular function in real time and on orbit. We measured the oxidative burst reaction in mammalian macrophages (NR8383 rat alveolar macrophages) exposed to a centrifuge regime of internal 0 g and 1 g controls and step-wise increase or decrease of the gravitational force in four independent experiments. Surprisingly, we found that these macrophages adapted to microgravity in an ultra-fast manner within seconds, after an immediate inhibitory effect on the oxidative burst reaction. For the first time, we provided direct evidence of cellular sensitivity to gravity, through real-time on orbit measurements and by using an experimental system, in which all factors except gravity were constant. The surprisingly ultra-fast adaptation to microgravity indicates that mammalian macrophages are equipped with a highly efficient adaptation potential to a low gravity environment. This opens new avenues for the exploration of adaptation of mammalian cells to gravitational changes

    Regulated on Activation, Normal T cell Expressed and Secreted (RANTES) drives the resolution of allergic asthma

    No full text
    Abstract RANTES is implicated in allergic asthma and in T cell-dependent clearance of infection. RANTES receptor family comprises CCR1, CCR3, and CCR5, which are G-protein-coupled receptors consisting of seven transmembrane helices. Infections with respiratory viruses like Rhinovirus cause induction of RANTES production by epithelial cells. Here, we studied the role of RANTES in the peripheral blood mononuclear cells in cohorts of children with and without asthma and validated and extended this study to the airways of adults with and without asthma. We further translated these studies to a murine model of asthma induced by house dust mite allergen in wild-type RANTES and CCR5-deficient mice. Here we show an unpredicted therapeutic role of RANTES in the resolution of allergen-induced asthma by orchestrating the transition of effector GATA-3+CD4+ T cells into immune-regulatory-type T cells and inflammatory eosinophils into resident eosinophils as well as increased IL-10 production in the lung

    The Death Receptor CD95 Activates Adult Neural Stem Cells for Working Memory Formation and Brain Repair

    Get PDF
    SummaryAdult neurogenesis persists in the subventricular zone and the dentate gyrus and can be induced upon central nervous system injury. However, the final contribution of newborn neurons to neuronal networks is limited. Here we show that in neural stem cells, stimulation of the “death receptor” CD95 does not trigger apoptosis but unexpectedly leads to increased stem cell survival and neuronal specification. These effects are mediated via activation of the Src/PI3K/AKT/mTOR signaling pathway, ultimately leading to a global increase in protein translation. Induction of neurogenesis by CD95 was further confirmed in the ischemic CA1 region, in the naive dentate gyrus, and after forced expression of CD95L in the adult subventricular zone. Lack of hippocampal CD95 resulted in a reduction in neurogenesis and working memory deficits. Following global ischemia, CD95-mediated brain repair rescued behavioral impairment. Thus, we identify the CD95/CD95L system as an instructive signal for ongoing and injury-induced neurogenesis

    Track Reconstruction with Cosmic Ray Data at the Tracker Integration Facility

    No full text
    The subsystems of the CMS silicon strip tracker were integrated and commissioned at the Tracker Integration Facility (TIF) in the period from November 2006 to July 2007. As part of the commissioning, large samples of cosmic ray data were recorded under various running conditions in the absence of a magnetic field. Cosmic rays detected by scintillation counters were used to trigger the readout of up to 15\,\% of the final silicon strip detector, and over 4.7~million events were recorded. This document describes the cosmic track reconstruction and presents results on the performance of track and hit reconstruction as from dedicated analyses

    Precision measurement of the structure of the CMS inner tracking system using nuclear interactions

    No full text

    Precision measurement of the structure of the CMS inner tracking system using nuclear interactions

    No full text

    Precision measurement of the structure of the CMS inner tracking system using nuclear interactions

    No full text
    corecore