8 research outputs found

    Calpain 3 and CaMKIIβ signaling are required to induce HSP70 necessary for adaptive muscle growth after atrophy.

    Get PDF
    Mutations in CAPN3 cause autosomal recessive limb girdle muscular dystrophy 2A. Calpain 3 (CAPN3) is a calcium dependent protease residing in the myofibrillar, cytosolic and triad fractions of skeletal muscle. At the triad, it colocalizes with calcium calmodulin kinase IIβ (CaMKIIβ). CAPN3 knock out mice (C3KO) show reduced triad integrity and blunted CaMKIIβ signaling, which correlates with impaired transcriptional activation of myofibrillar and oxidative metabolism genes in response to running exercise. These data suggest a role for CAPN3 and CaMKIIβ in gene regulation that takes place during adaptation to endurance exercise. To assess whether CAPN3- CaMKIIβ signaling influences skeletal muscle remodeling in other contexts, we subjected C3KO and wild type mice to hindlimb unloading and reloading and assessed CaMKIIβ signaling and gene expression by RNA-sequencing. After induced atrophy followed by 4 days of reloading, both CaMKIIβ activation and expression of inflammatory and cellular stress genes were increased. C3KO muscles failed to activate CaMKIIβ signaling, did not activate the same pattern of gene expression and demonstrated impaired growth at 4 days of reloading. Moreover, C3KO muscles failed to activate inducible HSP70, which was previously shown to be indispensible for the inflammatory response needed to promote muscle recovery. Likewise, C3KO showed diminished immune cell infiltration and decreased expression of pro-myogenic genes. These data support a role for CaMKIIβ signaling in induction of HSP70 and promotion of the inflammatory response during muscle growth and remodeling that occurs after atrophy, suggesting that CaMKIIβ regulates remodeling in multiple contexts: endurance exercise and growth after atrophy

    Vinculin gene is non-essential in Drosophila melanogaster

    Get PDF
    AbstractVinculin is thought to be an important cytoskeletal protein in the linkage between actin cytoskeleton and integrin transmembrane receptors. We identified Vinculin (Vinc) gene in the X chromosome of D. melanogaster. Drosophila vinculin is highly homologous in its N- and C-terminal domains both to mammalian and nematode vinculins, and contains internal repeats and proline-rich region typical for vinculins. The X chromosome rearrangement In(1LR)pn2a was found to disrupt Vinc so that the coding sequence is interrupted by the (AAGAG)n satellite DNA. Northern analysis revealed that the Vinc transcript is completely absent in the In(1LR)pn2a homozygous flies. Surprisingly, these Vinc flies are viable and fertile. This finding highlights plasticity and adaptive capacity of cellular cytoskeletal and anchorage system

    Eu-heterochromatic Rearrangements Induce Replication of Heterochromatic Sequences Normally Underreplicated in Polytene Chromosomes of Drosophila melanogaster

    No full text
    In polytene chromosomes of D. melanogaster the heterochromatic pericentric regions are underreplicated (underrepresented). In this report, we analyze the effects of eu-heterochromatic rearrangements involving a cluster of the X-linked heterochromatic (Xh) Stellate repeats on the representation of these sequences in salivary gland polytene chromosomes. The discontinuous heterochromatic Stellate cluster contains specific restriction fragments that were mapped along the distal region of Xh. We found that transposition of a fragment of the Stellate cluster into euchromatin resulted in its replication in polytene chromosomes. Interestingly, only the Stellate repeats that remain within the pericentric Xh and are close to a new eu-heterochromatic boundary were replicated, strongly suggesting the existence of a spreading effect exerted by the adjacent euchromatin. Internal rearrangements of the distal Xh did not affect Stellate polytenization. We also demonstrated trans effects exerted by heterochromatic blocks on the replication of the rearranged heterochromatin; replication of transposed Stellate sequences was suppressed by a deletion of Xh and restored by addition of Y heterochromatin. This phenomenon is discussed in light of a possible role of heterochromatic proteins in the process of heterochromatin underrepresentation in polytene chromosomes

    Calcium-dependent plasma membrane repair requires m- or mu-calpain, but not calpain-3, the proteasome, or caspases

    Get PDF
    International audienceMechanically damaged plasma membrane undergoes rapid calcium-dependent resealing that appears to depend, at least in part, on calpain-mediated cortical cytoskeletal remodeling. Cells null for Capns1, the noncatalytic small subunit present in both m- and mu-calpains, do not undergo calcium-mediated resealing. However, it is not known which of these calpains is needed for repair, or whether other major cytosolic proteinases may participate. Utilizing isozyme-selective siRNAs to decrease expression of Capn1 or Capn2, catalytic subunits of mu- and m-calpains, respectively, in a mouse embryonic fibroblast cell line, we now show that substantial loss of both activities is required to compromise calcium-mediated survival after cell scrape-damage. Using skeletal myotubes derived from Capn3-null mice, we were unable to demonstrate loss of sarcolemma resealing after needle scratch or laser damage. Isolated muscle fibers from Capn3 knockout mice also efficiently repaired laser damage. Employing either a cell line expressing a temperature sensitive El ubiquitin ligase, or lactacystin, a specific proteasome inhibitor, it was not possible to demonstrate an effect of the proteasome on calcium-mediated survival after injury. Moreover, several cell-permeant caspase inhibitors were incapable of significantly decreasing survival or inhibiting membrane repair. Taken together with previous studies, the results show that m- or p-calpain can facilitate repair of damaged plasma membrane. While there was no evidence for the involvement of calpain-3, the proteasome or caspases in early events of plasma membrane repair, our studies do not rule out their participation in downstream events that may link plasma membrane repair to adaptive remodeling after injury. (C) 2009 Elsevier B.V. All rights reserved

    Osteopontin promotes fibrosis in dystrophic mouse muscle by modulating immune cell subsets and intramuscular TGF-β

    No full text
    Duchenne muscular dystrophy (DMD) is an X-linked, degenerative muscle disease that is exacerbated by secondary inflammation. Here, we characterized the immunological milieu of dystrophic muscle in mdx mice, a model of DMD, to identify potential therapeutic targets. We identified a specific subpopulation of cells expressing the Vβ8.1/8.2 TCR that is predominant among TCR-β+ T cells. These cells expressed high levels of osteopontin (OPN), a cytokine that promotes immune cell migration and survival. Elevated OPN levels correlated with the dystrophic process, since OPN was substantially elevated in the serum of mdx mice and muscle biopsies after disease onset. Muscle biopsies from individuals with DMD also had elevated OPN levels. To test the role of OPN in mdx muscle, mice lacking both OPN and dystrophin were generated and termed double-mutant mice (DMM mice). Reduced infiltration of NKT-like cells and neutrophils was observed in the muscle of DMM mice, supporting an immunomodulatory role for OPN in mdx muscle. Concomitantly, an increase in CD4+ and FoxP3+ Tregs was also observed in DMM muscle, which also showed reduced levels of TGF-β, a known fibrosis mediator. These inflammatory changes correlated with increased strength and reduced diaphragm and cardiac fibrosis. These studies suggest that OPN may be a promising therapeutic target for reducing inflammation and fibrosis in individuals with DMD
    corecore