158 research outputs found

    Roots and routes in neighbourhoods. Length of residence, belonging and public familiarity in Berlin, Germany

    Get PDF
    Urban scholars commonly expect that residents show more neighbourhood belonging, the longer they live in an area. An imagery of fixed settlements thus remains dominant in a rapidly changing world. Recent research challenged classic assumptions but the alternative of elective belonging hardly differentiated between symbolic and practical neighbourhood use. As belonging is performatively maintained, this differentiation may be needed. What defines residents’ belonging in a neighbourhood in digital mobile times? Does length of residence alone result in place-based practices, familiarity with other people and ultimately in more belonging? Our analyses of survey-data from four Berlin neighbourhoods show that length of residence correlates with belonging, but not in a simple linear way. The use of infrastructure and especially public familiarity, which depends on the settlement as specific historical configuration, affect this relationship.城市学者普遍认为,居民在一个地区居住的时间越长,就越有邻里归属感。因此,固定定居点的意象在瞬息万变的世界中仍然占主导地位。最近的研究对经典假设提出了质疑,但选择性归属的替代方案 几乎没有区分象征性和实际的邻里功能。由于归属感是通过行动来维持的,因此可能需要对它们进行区分。在数字化、移动化时代,如何定义居民对社区的归属感?仅仅长时间的居住就会带来基于地方的实践、与他人的熟悉并最终带来更多的归属感?我们对柏林四个街区的调查数据进行了分析,发现居住时间长短与归属感相关,但并非以简单的线性方式相关。基础设施的使用,尤其是公众熟悉度,会影响这种关系。而公众熟悉度取决于作为特定历史配置的定居点。Peer Reviewe

    Climatic and societal impacts of a volcanic double event at the dawn of the Middle Ages

    Get PDF
    Volcanic activity in and around the year 536 CE led to severe cold and famine, and has been speculatively linked to large-scale societal crises around the globe. Using a coupled aerosol-climate model, with eruption parameters constrained by recently re-dated ice core records and historical observations of the aerosol cloud, we reconstruct the radiative forcing resulting from a sequence of two major volcanic eruptions in 536 and 540 CE. We estimate that the decadal-scale Northern Hemisphere (NH) extra-tropical radiative forcing from this volcanic “double event” was larger than that of any period in existing reconstructions of the last 1200 years. Earth system model simulations including the volcanic forcing show peak NH mean temperature anomalies reaching more than −2 °C, and show agreement with the limited number of available maximum latewood density temperature reconstructions. The simulations also produce decadal-scale anomalies of Arctic sea ice. The simulated cooling is interpreted in terms of probable impacts on agricultural production in Europe, and implies a high likelihood of multiple years of significant decreases in crop production across Scandinavia, supporting the theory of a connection between the 536 and 540 eruptions and evidence of societal crisis dated to the mid-6th century

    Evaluation of the performance of self-healing concrete at small and large scale under laboratory conditions

    Get PDF
    HEALCON is an EU-FP7 project which aims to develop self-healing concrete to create durable and sustainable concrete structures. While during the first years of the project the self-healing materials (including the healing agents and suitable encapsulation methodologies) and monitoring techniques were designed and tested at lab-scale, large scale elements have been tested near the end of the project to verify the feasibility and efficiency of the self-healing concrete under conditions closer to reality. For this paper, two types of healing agents were investigated for use in mortar and concrete. The first type of healing agent studied was a coated superabsorbent polymer (C-SAP). It is known that the autogenous healing capacity is increased by incorporation of superabsorbent polymers (SAPs) in mortar/concrete. The agents present in the crack can absorb intruding water, swell and block the crack, leading to immediate sealing, but can also exude moisture to the surrounding concrete environment stimulating healing of the concrete by hydration of unreacted cement particles or by CaCO3 precipitation. The disadvantage of these SAPs in the fresh mortar/concrete mix is however that they absorb large quantities of mixing water, leading to unwanted effects (e.g. loss of workability and macro-pore formation). By coating of the SAPs, we want to eliminate this disadvantage. The fluid bed spraying of the different layers was applied by VTT. A second healing agent studied, is a biogenic healing agent, namely a Mixed Ureolytic Culture (MUC). This type of healing agent was developed by Avecom in order to reduce the cost associated with the production of pure bacterial strains. This mixed ureolytic culture is moreover self-protecting and does not need any further encapsulation. At first, the performance of the healing agents itself was evaluated. For the coated SAPs, the swelling performance and swelling rate were determined, showing that the coating can limit the uptake of water during the first 10-15 minutes. For the MUC, the ureolytic and CaCO3 precipitating capacity was determined, immediately after production of the MUC and after 3 months of storage. The results show the potential of these mixed cultures to be used as self-healing agent in mortar/concrete, but also show a decrease of their effectiveness with time. Subsequently, the healing agents were incorporated in mortar mixes at UGent. A dosage of 1 wt% relative to the cement content caused a large reduction of the mechanical properties of the mortar (up to ~ 50%), except for the coated SAP. The sealing efficiency was evaluated with the water flow test, as designed by one of the project partners in HEALCON. The performance of reference mixes was compared to that of self-healing mixes with SAP, coated SAP or MUC (+ urea). Results showed that for cracks with a width less than 0.150 mm, all mortars were sealed (almost) completely after storage for 28 days in wet-dry environment (12 h wet – 12 h dry) after crack creation. For cracks with a larger width, differences were noticed between the different specimens. Moreover, also the immediate sealing effect induced by the presence of SAPs could be noticed. It has to be noted however that the crack width plays an important role but is varying along the crack length (within a specimen) and between specimens, making the analysis more difficult. In order to extend the application to concrete, self-healing and reference reinforced concrete beams (2500 x 400 x 200 mm) were produced at the Danish Technological Institute. The self-healing concretes contained coated SAPs or MUC. Moreover, the beams were equipped with corrosion sensors that are connected to a wireless monitoring system, developed by the Technology-Transfer- Initiative at the University of Stuttgart. The multi reference electrodes (MuRE) were installed alongside the reinforcements and measure the corrosion potential at certain positions. Data is collected in sufficiently dense intervals by battery powered nodes that transmit the data wirelessly to a base station and further on to a database where it can be accessed through a web based application for data analysis over the internet. At the age of 28 days, three-point bending cracks up to 0.6 mm were created in the beams. Subsequently, the beams were regularly sprayed with water (four times one hour per day) for 6 weeks and afterwards, the beams were, once a week, exposed to 3 wt% NaCl solution for 24 h. Evaluation of the self-healing performance by microscopic analysis (crack microscopy and analysis of thin sections) showed that for the reference beam and beam with MUC no significant healing could be noticed (probably because of insufficient supply of nutrients for the bacteria). For the beams with coated SAPs, the smaller cracks (0.1 and 0.2 mm) were partly closed. Continuous corrosion monitoring showed corrosion in the reference and MUC beams already after the first exposure to NaCl solution. Onset of corrosion was delayed in the case the beams contained coated SAPs

    Metal on Metal Bearing in Total Hip Arthroplasty and its Impact on Synovial Cell Count

    Get PDF
    Introduction: The effect of different bearings on synovial white blood cell (WBC) count and polymorphonuclear percentage (PMN%) in aspirations remains unclear. Therefore, this study investigates the impact of aseptic Metal-on-Metal (MoM) bearing on synovial fluid. Methods: We searched our arthroplasty registry for aseptic painful THAs with MoM bearings between 2011 and 2018. Then, a case-matched control group was selected with septic and aseptic Total Hip Arthroplasty (THA) with ceramic on a polyethylene (PE) bearing. The matching criteria consisted of gender, age +/-10 years, and time of aspiration (+/-2years). Periprosthetic Joint Infection (PJI) was defined according to the Infectious Diseases Society of America (IDSA), and Musculoskeletal Infection Society (MSIS) using bacterial cultures, sonication and histology. Results: In total, 19 patients who underwent hip aspiration with MoM bearing were identified. Five patients had to be excluded due to insufficient synovial fluid obtained (n = 2) or bacterial growth after sonication that was initially negative with the standard microbiological cultures (n = 3). As such, 14 were included. These patients were matched with 14 aseptic and 14 septic THAs with ceramic on a PE bearing, which constituted the control group. The mean serum chrome level was 20.0 ± 15.5 nmol/L and cobalt level 18.4 ± 22.1 nmol/L. The synovial WBC and PMN% varied significantly between MoM bearing group and the aseptic THA ceramic PE group (both p < 0.001), as well as the septic THA group (WBC p = 0.016, PMN% p < 0.001). Furthermore, the septic THA group had significantly higher CRP values than the aseptic MoM group (p = 0.016). Conclusion: MoM bearing shows significantly higher synovial WBC and PMN% when compared to aseptic THA with ceramic on PE bearing above the MSIS cut-off. This is an important consideration when diagnosing periprosthetic joint infection using the MSIS guidelines

    A conceptual model for unifying variability in space and time: Rationale, validation, and illustrative applications

    Get PDF
    With the increasing demand for customized systems and rapidly evolving technology, software engineering faces many challenges. A particular challenge is the development and maintenance of systems that are highly variable both in space (concurrent variations of the system at one point in time) and time (sequential variations of the system, due to its evolution). Recent research aims to address this challenge by managing variability in space and time simultaneously. However, this research originates from two different areas, software product line engineering and software configuration management, resulting in non-uniform terminologies and a varying understanding of concepts. These problems hamper the communication and understanding of involved concepts, as well as the development of techniques that unify variability in space and time. To tackle these problems, we performed an iterative, expert-driven analysis of existing tools from both research areas to derive a conceptual model that integrates and unifies concepts of both dimensions of variability. In this article, we first explain the construction process and present the resulting conceptual model. We validate the model and discuss its coverage and granularity with respect to established concepts of variability in space and time. Furthermore, we perform a formal concept analysis to discuss the commonalities and differences among the tools we considered. Finally, we show illustrative applications to explain how the conceptual model can be used in practice to derive conforming tools. The conceptual model unifies concepts and relations used in software product line engineering and software configuration management, provides a unified terminology and common ground for researchers and developers for comparing their works, clarifies communication, and prevents redundant developments
    corecore