588 research outputs found

    Spreading Width for Decay out of a Superdeformed Band

    Get PDF
    The attenuation factor F responsible for the decay out of a superdeformed (SD) band is calculated with the help of a statistical model. This factor is given by 1/F = (1 + Gamma(down) / Gamma(S)). Here, Gamma(S) is the width for the collective E2 transition within the superdeformed band, and Gamma(down) is the spreading width which describes the mixing between a state in the SD band and the normally deformed (ND) states of equal spin. The attenuation factor F is independent of the statistical E1 decay widths Gamma(N) of the ND states provided that the Gamma(N) are much larger than both Gamma(down) and Gamma(S). This condition is generically met. Previously measured values of F are used to determine Gamma(down).Comment: Submitted to Physical Review Letter

    A 2D Electromagnetic PIC Code for Distributed Memory Parallel Computers

    Get PDF
    The two dimensional electrostatic plasma particle in cell (PIC) code described an [1] has been upgraded to a 2D electromagnetic PIC code running on the Caltech/JPL Mark IIIfp and the Intel iPSC/860 parallel MIMD computers. The code solves the complete time dependent Maxwell’s equations where the plasma responses, i.e., the charge and current density in the plasma, are evaluated by advancing in time the trajectories of ~ 10^6 particles in their self-consistent electromagnetic field. The field equations are solved in Fourier space. Parallelisation is achieved through domain decomposition in real and Fourier space. Results from a simulation showing a two-dimensional Alfèn wave filamentation instability are shown; these are the first simulations of this 2D Alfèn wave decay process

    Cost-Effective PCR-Based Identification of Tunga penetrans (Siphonaptera) Larvae Extracted from Soil Samples Containing PCR Inhibitor-Rich Material

    Get PDF
    Tungiasis is a neglected tropical disease caused by skin-penetrating female Tunga penetrans fleas. Although tungiasis causes severe health problems, its ecology is poorly understood and morphological descriptions of the larvae are unavailable. To identify T. penetrans immature stages and sites where they develop, diagnostic PCRs are required. However, flea larvae feed on soil organic matter rich in PCR inhibitors. Here, three DNA preparation methods, including a soil DNA kit that removes inhibitors, a simple ammonium acetate precipitation approach (AmAcet) and a crude lysate of larvae (CL), were combined with amplification by the highly processive FIREPol® Taq or the inhibitor-resistant Phusion® polymerase. Independent of the polymerase used, the frequency of successful amplification, Cq values and PCR efficacies for the low-cost CL and AmAcet methods were superior to the commercial kit for amplification of a 278 bp partial internal transcribed spacer-2 (ITS-2) and a 730 bp pan-Siphonaptera cytochrome oxidase II PCR. For the CL method combined with Phusion® polymerase, the costs were approximately 20-fold lower than for the methods based on the soil DNA kit, which is a considerable advantage in resource-poor settings. The ITS-2 PCR did not amplify Ctenocephalides felis genomic or Tunga trimammilata ITS-2 plasmid DNA, meaning it can be used to specifically identify T. penetrans

    Production of 26Al in stellar hydrogen-burning environments: spectroscopic properties of states in 27Si

    Full text link
    Model predictions of the amount of the radioisotope 26Al produced in hydrogen-burning environments require reliable estimates of the thermonuclear rates for the 26gAl(p,{\gamma})27Si and 26mAl(p,{\gamma})27Si reactions. These rates depend upon the spectroscopic properties of states in 27Si within about 1 MeV of the 26gAl+p threshold (Sp = 7463 keV). We have studied the 28Si(3He,{\alpha})27Si reaction at 25 MeV using a high-resolution quadrupole-dipole-dipole-dipole magnetic spectrograph. For the first time with a transfer reaction, we have constrained J{\pi} values for states in 27Si over Ex = 7.0 - 8.1 MeV through angular distribution measurements. Aside from a few important cases, we generally confirm the energies and spin-parity assignments reported in a recent {\gamma}-ray spectroscopy study. The magnitudes of neutron spectroscopic factors determined from shell-model calculations are in reasonable agreement with our experimental values extracted using this reaction.Comment: accepted for publication in Phys. Rev.

    Trapped-ion decay spectroscopy towards the determination of ground-state components of double-beta decay matrix elements

    Full text link
    A new technique has been developed at TRIUMF's TITAN facility to perform in-trap decay spectroscopy. The aim of this technique is to eventually measure weak electron capture branching ratios (ECBRs) and by this to consequently determine GT matrix elements of ββ\beta\beta decaying nuclei. These branching ratios provide important input to the theoretical description of these decays. The feasibility and power of the technique is demonstrated by measuring the ECBR of 124^{124}Cs.Comment: 9 pages, 9 figure

    Barrier penetration and rotational damping of thermally excited superdeformed nuclei

    Full text link
    We construct a microscopic model of thermally excited superdeformed states that describes both the barrier penetration mechanism, leading to the decay-out transitions to normal deformed states, and the rotational damping causing fragmentation of rotational E2 transitions. We describe the barrier penetration by means of a tunneling path in the two-dimensional deformation energy surface, which is calculated with the cranked Nilsson-Strutinsky model. The individual excited superdeformed states and associated E2 transition strengths are calculated by the shell model diagonalization of the many-particle many-hole excitations interacting with the delta-type residual two-body force. The effect of the decay-out on the excited superdeformed states are discussed in detail for 152^{152}Dy, 143^{143}Eu and 192^{192}Hg.Comment: 33pages, 32 figures, submitted to Nucl.Phys.

    Analysis of the superdefomed rotational bands

    Get PDF
    All available experimental data for the ΔI=2\Delta I=2 transition energies in superdeformed bands are analyzed by using a new one-point formula. The existence of deviations from the smooth behavior is confirmed in many bands. However, we stress that one cannot necessarily speak about staggering patterns as they are mostly irregular. Simulations of the experimental data suggest that the irregularities may stem from the presence of irregular kinks in the rotational spectra. This could be a clue but, at the moment, where such kinks come from is an open question.Comment: 6 pages, RevTex, 7 p.s. figures, submitted to P.R.

    Study of bound states in 12Be through low-energy 11Be(d,p)-transfer reactions

    Get PDF
    The bound states of 12Be have been studied through a 11Be(d,p)12Be transfer reaction experiment in inverse kinematics. A 2.8 MeV/u beam of 11Be was produced using the REX-ISOLDE facility at CERN. The outgoing protons were detected with the T-REX silicon detector array. The MINIBALL germanium array was used to detect gamma rays from the excited states in 12Be. The gamma-ray detection enabled a clear identification of the four known bound states in 12Be, and each of the states has been studied individually. Differential cross sections over a large angular range have been extracted. Spectroscopic factors for each of the states have been determined from DWBA calculations and have been compared to previous experimental and theoretical results

    Isospin Character of the Pygmy Dipole Resonance in 124Sn

    Full text link
    The pygmy dipole resonance has been studied in the proton-magic nucleus 124Sn with the (a,a'g) coincidence method at E=136 MeV. The comparison with results of photon-scattering experiments reveals a splitting into two components with different structure: one group of states which is excited in (a,a'g) as well as in (g,g') reactions and a group of states at higher energies which is only excited in (g,g') reactions. Calculations with the self-consistent relativistic quasiparticle time-blocking approximation and the quasiparticle phonon model are in qualitative agreement with the experimental results and predict a low-lying isoscalar component dominated by neutron-skin oscillations and a higher-lying more isovector component on the tail of the giant dipole resonance
    corecore