407 research outputs found

    Symptomatic Subcapsular and Perinephric Hematoma Following Ureteroscopic Lithotripsy for Renal Calculi

    Full text link
    Objective: Ureteroscopic lithotripsy (URSL) is believed to be associated with less risk of symptomatic renal hematoma than extracorporeal shockwave lithotripsy (SWL) and percutaneous nephrolithotomy (PCNL). We sought to document the rate of and risk factors for this rare complication following URSL for renal calculi. Methods: With Institutional Review Board approval, we reviewed 1087 cases of URSL performed between July 2009 and October 2012 for four surgeons. We identified cases for renal calculi complicated by symptomatic ?hematoma? by searching electronic medical records of patients undergoing URSL with a web-based search tool and cross-referencing with a departmental quality improvement database for postoperative complications. Chi-squared tests were used to assess risk factors. Results: Among 877 renal units exposed to URSL for renal calculi, 4 were complicated by symptomatic subcapsular hematomas (SH) and 3 by symptomatic perinephric hematomas (PH), yielding a 0.5% and 0.3% rate for each complication, respectively. Pain was the primary presenting symptom. Almost all cases presented within 24 to 48 hours postop. Two PH patients required postoperative blood transfusion. Four patients (two SH, two PH) were hospitalized for observation. Ureteral sheaths were used in two cases (one PH and one SH). There was no association with age, diabetes, body mass index (BMI), or operative duration (p-values all>0.05). However, hematoma did correlate with female gender, preoperative hypertension, preoperative ureteral stenting, intraoperative ureteral sheath use, and postoperative ureteral stenting (all p-values<0.0001). Conclusions: While symptomatic hematoma is a complication of URSL, the rate of such outcome (0.8%) is far less than that reported by prior series with SWL and PCNL. This may partially be attributable to collection biases, where subclinical cases are not imaged, or anchoring biases, where clinicians attribute symptoms to another possible etiology. This outcome can be morbid, but can often be conservatively managed with observation.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/140379/1/end.2014.0176.pd

    The role of retrograde intraflagellar transport in flagellar assembly, maintenance, and function

    Get PDF
    The maintenance of flagellar length is believed to require both anterograde and retrograde intraflagellar transport (IFT). However, it is difficult to uncouple the functions of retrograde transport from anterograde, as null mutants in dynein heavy chain 1b (DHC1b) have stumpy flagella, demonstrating solely that retrograde IFT is required for flagellar assembly. We isolated a Chlamydomonas reinhardtii mutant (dhc1b-3) with a temperature-sensitive defect in DHC1b, enabling inducible inhibition of retrograde IFT in full-length flagella. Although dhc1b-3 flagella at the nonpermissive temperature (34 degrees C) showed a dramatic reduction of retrograde IFT, they remained nearly full-length for many hours. However, dhc1b-3 cells at 34 degrees C had strong defects in flagellar assembly after cell division or pH shock. Furthermore, dhc1b-3 cells displayed altered phototaxis and flagellar beat. Thus, robust retrograde IFT is required for flagellar assembly and function but is dispensable for the maintenance of flagellar length. Proteomic analysis of dhc1b-3 flagella revealed distinct classes of proteins that change in abundance when retrograde IFT is inhibited

    A protein methylation pathway in Chlamydomonas flagella is active during flagellar resorption

    Get PDF
    Author Posting. © American Society for Cell Biology, 2008. This article is posted here by permission of American Society for Cell Biology for personal use, not for redistribution. The definitive version was published in Molecular Biology of the Cell 19 (2008): 4319-4327, doi:10.1091/mbc.E08-05-0470.During intraflagellar transport (IFT), the regulation of motor proteins, the loading and unloading of cargo and the turnover of flagellar proteins all occur at the flagellar tip. To begin an analysis of the protein composition of the flagellar tip, we used difference gel electrophoresis to compare long versus short (i.e., regenerating) flagella. The concentration of tip proteins should be higher relative to that of tubulin (which is constant per unit length of the flagellum) in short compared with long flagella. One protein we have identified is the cobalamin-independent form of methionine synthase (MetE). Antibodies to MetE label flagella in a punctate pattern reminiscent of IFT particle staining, and immunoblot analysis reveals that the amount of MetE in flagella is low in full-length flagella, increased in regenerating flagella, and highest in resorbing flagella. Four methylated proteins have been identified in resorbing flagella, using antibodies specific for asymmetrically dimethylated arginine residues. These proteins are found almost exclusively in the axonemal fraction, and the methylated forms of these proteins are essentially absent in full-length and regenerating flagella. Because most cells resorb cilia/flagella before cell division, these data indicate a link between flagellar protein methylation and progression through the cell cycle.This work was supported by National Institutes of Health Grant DK071720 (R.D.S.) and National Science Foundation Grant MCB 0418877 (R.D.S.)

    Intraflagellar Transport (IFT) Protein IFT25 Is a Phosphoprotein Component of IFT Complex B and Physically Interacts with IFT27 in Chlamydomonas

    Get PDF
    BACKGROUND: Intraflagellar transport (IFT) is the bidirectional movement of IFT particles between the cell body and the distal tip of a flagellum. Organized into complexes A and B, IFT particles are composed of at least 18 proteins. The function of IFT proteins in flagellar assembly has been extensively investigated. However, much less is known about the molecular mechanism of how IFT is regulated. METHODOLOGY/PRINCIPAL FINDINGS: We herein report the identification of a novel IFT particle protein, IFT25, in Chlamydomonas. Dephosphorylation assay revealed that IFT25 is a phosphoprotein. Biochemical analysis of temperature sensitive IFT mutants indicated that IFT25 is an IFT complex B subunit. In vitro binding assay confirmed that IFT25 binds to IFT27, a Rab-like small GTPase component of the IFT complex B. Immunofluorescence staining showed that IFT25 has a punctuate flagellar distribution as expected for an IFT protein, but displays a unique distribution pattern at the flagellar base. IFT25 co-localizes with IFT27 at the distal-most portion of basal bodies, probably the transition zones, and concentrates in the basal body region by partially overlapping with other IFT complex B subunits, such as IFT46. Sucrose density gradient centrifugation analysis demonstrated that, in flagella, the majority of IFT27 and IFT25 including both phosphorylated and non-phosphorylated forms are cosedimented with other complex B subunits in the 16S fractions. In contrast, in cell body, only a fraction of IFT25 and IFT27 is integrated into the preassembled complex B, and IFT25 detected in complex B is preferentially phosphorylated. CONCLUSION/SIGNIFICANCE: IFT25 is a phosphoprotein component of IFT particle complex B. IFT25 directly interacts with IFT27, and these two proteins likely form a subcomplex in vivo. We postulate that the association and disassociation between the subcomplex of IFT25 and IFT27 and complex B might be involved in the regulation of IFT

    Measurement of Semileptonic Branching Fractions of B Mesons to Narrow D** States

    Get PDF
    Using the data accumulated in 2002-2004 with the DO detector in proton-antiproton collisions at the Fermilab Tevatron collider with centre-of-mass energy 1.96 TeV, the branching fractions of the decays B -> \bar{D}_1^0(2420) \mu^+ \nu_\mu X and B -> \bar{D}_2^{*0}(2460) \mu^+ \nu_\mu X and their ratio have been measured: BR(\bar{b}->B) \cdot BR(B-> \bar{D}_1^0 \mu^+ \nu_\mu X) \cdot BR(\bar{D}_1^0 -> D*- pi+) = (0.087+-0.007(stat)+-0.014(syst))%; BR(\bar{b}->B)\cdot BR(B->D_2^{*0} \mu^+ \nu_\mu X) \cdot BR(\bar{D}_2^{*0} -> D*- \pi^+) = (0.035+-0.007(stat)+-0.008(syst))%; and (BR(B -> \bar{D}_2^{*0} \mu^+ \nu_\mu X)BR(D2*0->D*- pi+)) / (BR(B -> \bar{D}_1^{0} \mu^+ \nu_\mu X)\cdot BR(\bar{D}_1^{0}->D*- \pi^+)) = 0.39+-0.09(stat)+-0.12(syst), where the charge conjugated states are always implied.Comment: submitted to Phys. Rev. Let

    Measurement of the Lifetime Difference in the B_s^0 System

    Get PDF
    We present a study of the decay B_s^0 -> J/psi phi We obtain the CP-odd fraction in the final state at time zero, R_perp = 0.16 +/- 0.10 (stat) +/- 0.02 (syst), the average lifetime of the (B_s, B_sbar) system, tau (B_s^0) =1.39^{+0.13}_{-0.16} (stat) ^{+0.01}_{-0.02} (syst) ps, and the relative width difference between the heavy and light mass eigenstates, Delta Gamma/Gamma = (Gamma_L - Gamma_H)/Gamma =0.24^{+0.28}_{-0.38} (stat) ^{+0.03}_{-0.04} (syst). With the additional constraint from the world average of the B_s^0$lifetime measurements using semileptonic decays, we find tau (B_s^0)= 1.39 +/- 0.06 ~ps and Delta Gamma/\Gamma = 0.25^{+0.14}_{-0.15}. For the ratio of the B_s^0 and B^0 lifetimes we obtain tau(B_s^0)/tau(B^0)} = 0.91 +/- 0.09 (stat) +/- 0.003 (syst).Comment: submitted to Phys. Rev. Lett. FERMILAB-PUB-05-324-

    Search for right-handed W bosons in top quark decay

    Full text link
    We present a measurement of the fraction f+ of right-handed W bosons produced in top quark decays, based on a candidate sample of ttˉt\bar{t} events in the lepton+jets decay mode. These data correspond to an integrated luminosity of 230pb^-1, collected by the DO detector at the Fermilab Tevatron ppˉp\bar{p} Collider at sqrt(s)=1.96 TeV. We use a constrained fit to reconstruct the kinematics of the ttˉt\bar{t} and decay products, which allows for the measurement of the leptonic decay angle θ\theta^* for each event. By comparing the cosθ\cos\theta^* distribution from the data with those for the expected background and signal for various values of f+, we find f+=0.00+-0.13(stat)+-0.07(syst). This measurement is consistent with the standard model prediction of f+=3.6x10^-4.Comment: Submitted to Physical Review D Rapid Communications 7 pages, 3 figure

    Search for R-parity violating supersymmetry via the LLE couplings lambda_{121}, lambda_{122} or lambda_{133} in ppbar collisions at sqrt(s)=1.96 TeV

    Get PDF
    A search for gaugino pair production with a trilepton signature in the framework of R-parity violating supersymmetry via the couplings lambda_121, lambda_122, or lambda_133 is presented. The data, corresponding to an integrated luminosity of L~360/pb, were collected from April 2002 to August 2004 with the D0 detector at the Fermilab Tevatron Collider, at a center-of-mass energy of sqrt(s)=1.96 TeV. This analysis considers final states with three charged leptons with the flavor combinations eel, mumul, and eetau (l=e or mu). No evidence for supersymmetry is found and limits at the 95% confidence level are set on the gaugino pair production cross section and lower bounds on the masses of the lightest neutralino and chargino are derived in two supersymmetric models.Comment: 9 pages, 4 figures (fig2 includes 3 subfigures

    Search for W' boson production in the W'->tb decay channel

    Get PDF
    We present a search for the production of a new heavy gauge boson W' that decays to a top quark and a bottom quark. We have analyzed 230 pb^{-1} of data collected with the Dzero detector at the Fermilab Tevatron collider at a center-of-mass energy of 1.96 TeV. No significant excess of events above the standard model expectation is found in any region of the final state invariant mass distribution. We set upper limits on the production cross section of W' bosons times branching ratio to top quarks at the 95% confidence level for several different W' boson masses. We exclude masses between 200 GeV and 610 GeV for a W' boson with standard-model-like couplings, between 200 GeV and 630 GeV for a W' boson with right-handed couplings that is allowed to decay to both leptons and quarks, and between 200 GeV and 670 GeV for a W' boson with right-handed couplings that is only allowed to decay to quarks.Comment: 9 pages, 6 figures, accepted by Phys. Lett.
    corecore