2,088 research outputs found

    Applications of Metric Coinduction

    Full text link
    Metric coinduction is a form of coinduction that can be used to establish properties of objects constructed as a limit of finite approximations. One can prove a coinduction step showing that some property is preserved by one step of the approximation process, then automatically infer by the coinduction principle that the property holds of the limit object. This can often be used to avoid complicated analytic arguments involving limits and convergence, replacing them with simpler algebraic arguments. This paper examines the application of this principle in a variety of areas, including infinite streams, Markov chains, Markov decision processes, and non-well-founded sets. These results point to the usefulness of coinduction as a general proof technique

    Symbolic Algorithms for Language Equivalence and Kleene Algebra with Tests

    Get PDF
    We first propose algorithms for checking language equivalence of finite automata over a large alphabet. We use symbolic automata, where the transition function is compactly represented using a (multi-terminal) binary decision diagrams (BDD). The key idea consists in computing a bisimulation by exploring reachable pairs symbolically, so as to avoid redundancies. This idea can be combined with already existing optimisations, and we show in particular a nice integration with the disjoint sets forest data-structure from Hopcroft and Karp's standard algorithm. Then we consider Kleene algebra with tests (KAT), an algebraic theory that can be used for verification in various domains ranging from compiler optimisation to network programming analysis. This theory is decidable by reduction to language equivalence of automata on guarded strings, a particular kind of automata that have exponentially large alphabets. We propose several methods allowing to construct symbolic automata out of KAT expressions, based either on Brzozowski's derivatives or standard automata constructions. All in all, this results in efficient algorithms for deciding equivalence of KAT expressions

    Modularizing the Elimination of r=0 in Kleene Algebra

    Full text link
    Given a universal Horn formula of Kleene algebra with hypotheses of the form r = 0, it is already known that we can efficiently construct an equation which is valid if and only if the Horn formula is valid. This is an example of elimination of hypotheses, which is useful because the equational theory of Kleene algebra is decidable while the universal Horn theory is not. We show that hypotheses of the form r = 0 can still be eliminated in the presence of other hypotheses. This lets us extend any technique for eliminating hypotheses to include hypotheses of the form r = 0

    On Distance Coloring

    Full text link
    Call a connected undirected graph (d,c)-colorable if there is a vertex coloring using at most c colors such that no two vertices of distance d or less have the same color. It is well known that (1,2)-colorability is decidable in linear time, but (1,c)-colorability for c greater than or equal to 3 is NP-complete. Sharp (2007) shows that for fixed d greater than or equal to 2, the (d,c)-colorability problem is solvable in linear time for c less than or equal to 3d/2 and NP-complete otherwise. In this note we give an alternative construction that improves the upper time bound as a function of d for the case c less than or equal to 3d/2. The construction entails a generalization of the notion of tree decomposition and bounded treewidth (Robertson and Seymour 1986) to arbitrary overlay graphs, not just trees, which may be of independent interest

    Completeness and Incompleteness of Synchronous Kleene Algebra

    Get PDF
    Synchronous Kleene algebra (SKA), an extension of Kleene algebra (KA), was proposed by Prisacariu as a tool for reasoning about programs that may execute synchronously, i.e., in lock-step. We provide a countermodel witnessing that the axioms of SKA are incomplete w.r.t. its language semantics, by exploiting a lack of interaction between the synchronous product operator and the Kleene star. We then propose an alternative set of axioms for SKA, based on Salomaa's axiomatisation of regular languages, and show that these provide a sound and complete characterisation w.r.t. the original language semantics.Comment: Accepted at MPC 201

    Computing with Capsules

    Full text link
    Capsules provide a clean algebraic representation of the state of a computation in higher-order functional and imperative languages. They play the same role as closures or heap- or stack-allocated environments but are much simpler. A capsule is essentially a finite coalgebraic representation of a regular closed lambda-coterm. One can give an operational semantics based on capsules for a higher-order programming language with functional and imperative features, including mutable bindings. Lexical scoping is captured purely algebraically without stacks, heaps, or closures. All operations of interest are typable with simple types, yet the language is Turing complete. Recursive functions are represented directly as capsules without the need for unnatural and untypable fixpoint combinators

    Certification of Compiler Optimizations using Kleene Algebra with Tests

    Full text link
    We use Kleene algebra with tests to verify a wide assortment of common compiler optimizations, including dead code elimination, common subexpression elimination, copy propagation, loop hoisting, induction variable elimination, instruction scheduling, algebraic simplification, loop unrolling, elimination of redundant instructions, array bounds check elimination, and introduction of sentinels. In each of these cases, we give a formal equational proof of the correctness of the optimizing transformation

    RankPL: A Qualitative Probabilistic Programming Language

    Full text link
    In this paper we introduce RankPL, a modeling language that can be thought of as a qualitative variant of a probabilistic programming language with a semantics based on Spohn's ranking theory. Broadly speaking, RankPL can be used to represent and reason about processes that exhibit uncertainty expressible by distinguishing "normal" from" surprising" events. RankPL allows (iterated) revision of rankings over alternative program states and supports various types of reasoning, including abduction and causal inference. We present the language, its denotational semantics, and a number of practical examples. We also discuss an implementation of RankPL that is available for download
    corecore