2,088 research outputs found
Applications of Metric Coinduction
Metric coinduction is a form of coinduction that can be used to establish
properties of objects constructed as a limit of finite approximations. One can
prove a coinduction step showing that some property is preserved by one step of
the approximation process, then automatically infer by the coinduction
principle that the property holds of the limit object. This can often be used
to avoid complicated analytic arguments involving limits and convergence,
replacing them with simpler algebraic arguments. This paper examines the
application of this principle in a variety of areas, including infinite
streams, Markov chains, Markov decision processes, and non-well-founded sets.
These results point to the usefulness of coinduction as a general proof
technique
Symbolic Algorithms for Language Equivalence and Kleene Algebra with Tests
We first propose algorithms for checking language equivalence of finite
automata over a large alphabet. We use symbolic automata, where the transition
function is compactly represented using a (multi-terminal) binary decision
diagrams (BDD). The key idea consists in computing a bisimulation by exploring
reachable pairs symbolically, so as to avoid redundancies. This idea can be
combined with already existing optimisations, and we show in particular a nice
integration with the disjoint sets forest data-structure from Hopcroft and
Karp's standard algorithm. Then we consider Kleene algebra with tests (KAT), an
algebraic theory that can be used for verification in various domains ranging
from compiler optimisation to network programming analysis. This theory is
decidable by reduction to language equivalence of automata on guarded strings,
a particular kind of automata that have exponentially large alphabets. We
propose several methods allowing to construct symbolic automata out of KAT
expressions, based either on Brzozowski's derivatives or standard automata
constructions. All in all, this results in efficient algorithms for deciding
equivalence of KAT expressions
Modularizing the Elimination of r=0 in Kleene Algebra
Given a universal Horn formula of Kleene algebra with hypotheses of the form
r = 0, it is already known that we can efficiently construct an equation which
is valid if and only if the Horn formula is valid. This is an example of
elimination of hypotheses, which is useful because the equational theory
of Kleene algebra is decidable while the universal Horn theory is not. We show
that hypotheses of the form r = 0 can still be eliminated in the presence of
other hypotheses. This lets us extend any technique for eliminating hypotheses
to include hypotheses of the form r = 0
On Distance Coloring
Call a connected undirected graph (d,c)-colorable if there is a vertex coloring using at most c colors such that no two vertices of distance d or less have the same color. It is well known that (1,2)-colorability is decidable in linear time, but (1,c)-colorability for c greater than or equal to 3 is NP-complete. Sharp (2007) shows that for fixed d greater than or equal to 2, the (d,c)-colorability problem is solvable in linear time for c less than or equal to 3d/2 and NP-complete otherwise. In this note we give an alternative construction that improves the upper time bound as a function of d for the case c less than or equal to 3d/2. The construction entails a generalization of the notion of tree decomposition and bounded treewidth (Robertson and Seymour 1986) to arbitrary overlay graphs, not just trees, which may be of independent interest
Completeness and Incompleteness of Synchronous Kleene Algebra
Synchronous Kleene algebra (SKA), an extension of Kleene algebra (KA), was
proposed by Prisacariu as a tool for reasoning about programs that may execute
synchronously, i.e., in lock-step. We provide a countermodel witnessing that
the axioms of SKA are incomplete w.r.t. its language semantics, by exploiting a
lack of interaction between the synchronous product operator and the Kleene
star. We then propose an alternative set of axioms for SKA, based on Salomaa's
axiomatisation of regular languages, and show that these provide a sound and
complete characterisation w.r.t. the original language semantics.Comment: Accepted at MPC 201
Computing with Capsules
Capsules provide a clean algebraic representation of the state of a computation in higher-order functional and imperative languages. They play the same role as closures or heap- or stack-allocated environments but are much simpler. A capsule is essentially a finite coalgebraic representation of a regular closed lambda-coterm. One can give an operational semantics based on capsules for a higher-order programming language with functional and imperative features, including mutable bindings. Lexical scoping is captured purely algebraically without stacks, heaps, or closures. All operations of interest are typable with simple types, yet the language is Turing complete. Recursive functions are represented directly as capsules without the need for unnatural and untypable fixpoint combinators
Certification of Compiler Optimizations using Kleene Algebra with Tests
We use Kleene algebra with tests to verify a wide assortment of common compiler optimizations, including dead code elimination, common subexpression elimination, copy propagation, loop hoisting, induction variable elimination, instruction scheduling, algebraic simplification, loop unrolling, elimination of redundant instructions, array bounds check elimination, and introduction of sentinels. In each of these cases, we give a formal equational proof of the correctness of the optimizing transformation
RankPL: A Qualitative Probabilistic Programming Language
In this paper we introduce RankPL, a modeling language that can be thought of
as a qualitative variant of a probabilistic programming language with a
semantics based on Spohn's ranking theory. Broadly speaking, RankPL can be used
to represent and reason about processes that exhibit uncertainty expressible by
distinguishing "normal" from" surprising" events. RankPL allows (iterated)
revision of rankings over alternative program states and supports various types
of reasoning, including abduction and causal inference. We present the
language, its denotational semantics, and a number of practical examples. We
also discuss an implementation of RankPL that is available for download
- …
