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1 Introduction

The Myhill-Nerode Theorem is a classic result in the theory of finite au-
tomata. It dates to work of Myhill [13] and Nerode [14] in the late 1950s,
but is still today considered one of the most important results in the sub-
ject. It has numerous applications, especially in showing that certain sets
are regular or certain apparently stronger types of automata are really no
more powerful than finite automata. Nevertheless, its statement and proof
are elementary enough that it can be taught in introductory courses.

The Myhill-Nerode Theorem exploits a fundmental connection between
combinatorics and algebra to give a particularly satisfying characterization
of the regular sets over a finite alphabet. As presented in a standard under-
graduate text [8], it states:

Myhill-Nerode Theorem [13, 14] Let R be a set of strings over a finite
alphabet Σ. The following three propositions are equivalent :

(i) R is accepted by a finite automaton

(ii) R is a union of classes of a right-invariant equivalence relation of
finite index

(iii) the relation ≡R is of finite index, where x ≡R y iff

∀z ∈ Σ∗ xz ∈ R ↔ yz ∈ R .

The equivalence of (i) and (ii) is gener ly established using the following
lemma:

Correspondence Lemma Up to isomorphism, there is a one-to-one corre-
spondence between the right-invariant equivalence relations of finite index on
Σ and deterministic finite automata over Σ with no inaccessible states.

Essentially, the states correspond to the equivalence classes, and the prop-
erty of right invariance allows the deterministic transition function to be
defined unambiguously on equivalence classes.

The Myhill-Nerode Theorem generalizes in a straightforward way to au-
tomata on finite trees. This generalization first came to light in the late
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1960s, ten years after Myhill and Nerode’s work, and can be attributed to
a combination of results of Brainerd [2, 3], Eilenberg and Wright [5], and
Arbib and Give’on [1], although one must also credit Thatcher and Wright
[15] in this context with the development of the algebraic approach to au-
tomata on finite trees, which allows “conventional finite automata theory [to
go] through for the generalization—and. . . quite neatly” [15]. A particularly
easy proof of this generalization in the style of [8] can be found in [11].

In the Thatcher-Wright approach to automata on finite trees, the ele-
ments of Σ are assigned finite arities, and instead of strings one works with
the ground terms TΣ over Σ. A deterministic finite tree automaton over Σ
is just a finite Σ-algebra A, consisting of a finite carrier |A| and a distin-
guished n-ary function fA : |A|n → |A| for each n-ary symbol f ∈ Σ. This
definition includes the nullary case (n = 0), in which the function symbol is
called a constant and interpreted as an element of |A|. By analogy with the
combinatorial treatment of [8], we call elements of |A| states.

Since TΣ is the free Σ-algebra on the empty set of generators, there exists
a unique Σ-algebra homomorphism

δ : TΣ → A .

This map assigns a unique state δ(t) to each term t in an inductive fashion,
and is analogous to “running” the automaton on input t. A state is said to
be accessible if it is δ(t) for some term t.

An equivalence relation R on TΣ is said to be recognized by the automaton
A if the kernel of δ (i.e., the relation {s ≡ t | δ(s) = δ(t)}) refines R. In
other words, R is recognized by A if for any terms s, t ∈ TΣ, if δ(s) = δ(t),
then sRt. The special case of regular sets discussed above corresponds to
an R with two equivalence classes. If R is recognized by A, it is possible to
partition the states of A such that the inverse image of the partition under δ
coincides with R; this partition of the states corresponds to the specification
of a set of final or accept states in the special case of regular sets.

For a given equivalence relation R ⊆ TΣ (recognizable or not), define s ≡R t
if for all terms u with exactly one occurrence of a variable x and no other
variables,

u[x/s] R u[x/t],

where u[x/s] denotes the term obtained by substituting s for x in u. The
relation ≡R generalizes the relation on strings of the same name mentioned
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above.

Myhill-Nerode Theorem for trees [3, 5, 1] Let R be an equivalence
negation on TΣ. The following three propositions are equivalent:

(i) R is recognizable

(ii) there exists a congruence on TΣ of finite index refining R

(iii) the relation ≡R is of finite index.

The Myhill-Nerode theorem for strings corresponds to the special case of
a single nullary operator and several unary operators.

In the algebraic approach, the tree version of the Correspondence Lemma
reduces to an elementary fact of universal algebra: up to isomorphism, the
homomorphic images of TΣ and the congruences on TΣ are in one-to–one
correspondence. The correspondence is given by the quotient construction

≡ → TΣ/ ≡ ,

in which it is readily observed that the quotient is finite iff the corresponding
congruence is of finite index.

In [9, 10], we investigated the complexity of various decision problems in
Σ-algebras presented by finite sets of ground equations over TΣ; that is, quo-
tients of TΣ modulo finitely generated congruences on TΣ. We showed, among
other results, that every such algebra has a minimal canonical presentation
that is unique up to isomorphism.

This result has an interesting interpretation in terms of the Myhill-Nerode
Theorem. First, we note that every congruence ≡ on TΣ of finite index is
finitely generated. To see this, let U ⊆ TΣ be a complete set of representatives
for the ≡-classes, and consider the finite subrelation consisting of all pairs in
≡ of the form

fu1 . . . un ≡ u (1)

for u1, . . . , un, u ∈ U and f ∈ Σn. The relation generated by the equations
(1) is surely contained in ≡; conversely, an easy inductive argument shows
that every term is equivalent to the u ∈ U in its ≡-class under the congruence
generated by the equations (1).
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However, not every finitely generated congruence is of finite index: for
example, the identity relation on TΣ is of infinite index (assuming Σ has at
least one constant and at least one symbol of higher arity), but is generated
by the empty relation.

The question thus arises as to whether there is a more general version
of the Myhill-Nerode theorem with “finitely generated” in place of “finite
index”.

The answer to this question is mixed. On the positive side, we formulate
and prove a version of the Correspondence Lemma in this more general set-
ting. On the other hand, we construct an equivalence relation R that has no
minimal refining finitely generated congruence.

In order to formulate the first result, we need a combinatorial structure
that is to finitely generated congruences as finite tree automata are to con-
gruences of finite index. The appropriate notion is a finite partial automaton
on TΣ. Simply stated, a finite partial automaton is just a finite partial Σ-
algebra, where a partial Σ-algebra is like a Σ-algebra except the distinguished
operations need not be everywhere defined. We will show how a finite partial
automaton A uniquely determines a possibly infinite set of “states”. This
is done formally by a universal algebraic construction giving a certain total
extension ̂A of A called its free total extension.

Finally, we give an application to term rewriting. We show that every
ground term rewrite system has a canonical equivalent system which is un-
ambiguous and in which all rules are of the form fq1 . . . qn → q, where
q1, . . . , qn, q are auxiliary constants. By canonical we mean that the sys-
tem is minimal and unique up to isomorphism. The canonical system can be
obtained effectively from the original system in polynomial time. This allows
us to test the equivalence of ground term rewrite systems over a signature
of bounded arity in polynomial time. When the arity is unbounded, the
equivalence problem for ground term rewrite systems is equivalent to graph
isomorphism.

Although the notions of partial automaton and free total extension and the
formulation of this result in automata-theoretic terms are apparently new,
much of the essential content is more or less implicit in [9, 10]
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2 Partial Algebras and Partial Automata

Let Σ be an arbitrary but fixed finite ranked alphabet. The rank of f ∈ Σ
is called its arity. The set of n-ary elements of Σ is denoted Σn. The set of
ground terms over Σ is denoted TΣ.

A congruence on TΣ is an equivalence relation ≡ such that fs1 . . . sn ≡
ft1 . . . tn whenever f ∈ Σn and si ≡ ti, 1 ≤ i ≤ n. If Γ is a binary relation
on TΣ, the congruence generated by Γ is the smallest congruence on TΣ con-
taining Γ. For s, t ∈ TΣ, we write s ≡ t (Γ) and say s and t are congruent
modulo Γ if s and t are equivalent modulo the congruence generated by Γ.
A congruence ≡ is finitely generated if it is generated by a finite subrelation.

An equivalence relation ≡ is of finite index if there are only finitely may
≡-classes. An equivalence relation R refines another equivalence relation S
if each S-class is a union of R-classes; equivalently, if sRt implies sSt.

Definition 1 A partial Σ-algebra (or just partial algebra for short) is a
structure

A = (|A|, ·A)

where |A| is a set, called the carrier of A, and ·A assigns a partial n-ary
function

fA : |A|n → |A|
to each n-ary function symbol f of Σ. By partial we mean that fA need not
be everywhere defined. We identify nullary functions

cA : |A|0 → |A|

with elements of |A|. Nullary symbols c are often called constants. We
usually use c, d, . . . for constants and f, g, . . . for function symbols in Σ of
any arity. Like functions of higher arity, cA may be undefined in a partial
algebra A.

The partial algebra A is said to be total if all functions fA are everywhere
defined. It is said to be finite if |A| is a finite set. ✷

Definition 2 Let A and B be two partial Σ-algebras. A (total) function

h : A → B
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is a partial Σ-algebra homomorphism (or just partial homomorphism for
short) if, whenever q1, . . . , qn ∈ A, f ∈ Σn, and fA(q1, . . . , qn) its defined,
then fB(h(q1), . . . , h(qn)) is defined and equal to h(fA(q1, . . . , qn)). We em-
phasize that partial homomorphisms are always total functions.

We write A � B and say that A is a partial subalgebra of B and that B
is an extension of A if |A| ⊆ |B| and the inclusion map A → B is a partial
homomorphism.

A partial subalgebra A of B is said to be the induced partial subalgebra of
B on Q ⊆ |B| if |A| = Q and for all q1, . . . , qn ∈ Q and f ∈ Σn,

fA(q1, . . . , qn) = fB(q1, . . . , qn)

whenever the right hand side is defined and in Q. ✷

Definition 3 If A is a partial algebra, let TΣ∪|A| be the set of ground terms
over the disjoint union Σ∪ |A|, where we assign elements of |A| arity 0. The
set of formal equations

∆A = {q ≡ fq1 . . . qn | q1, . . . , qn, q ∈ |A|, f ∈ Σn,
fA(q1, . . . , qn) exists and is equal to q}

is called the diagram of A. ✷

The term partial automaton is synonymous with partial algebra. When
thinking automata-theoretically, we often call elements of |A| states.

A conventional tree automaton over Σ in the sense of Thatcher and Wright
is just a finite total Σ-algebra A. Informally, such an automaton takes a
ground term in TΣ as input. It starts at the leaves and moves upward,
associating a state with each subterm inductively. If the immediate subterms
t1, . . . , tn of the term ft1 . . . tn are labeled with states q1, . . . , qn respectively,
then the term ft1 . . . tn will be labeled with state fA(q1, . . . , qn). Note that
the basis of the induction is included here: the state labeling the term c is
cA.

Formally, the labeling function is just the unique Σ-algebra homomorphism

δ : TΣ → A

from the free Σ-algebra TΣ to A. By considerations of universal algebra, this
homomorphism exists and is unique. A state of A is said to be accessible if
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it is in the image of TΣ under δ, inaccessiable otherwise. Thus we would say
that the automaton A has no inaccessible states if the map δ is onto.

This definition extends the usual definition of automata on finite strings in
a natural way: we can think of an automaton on strings over a finite alphabet
Σ as a tree automaton over Σ ∪ {✷} turned on its side, where ✷ is a new
constant and elements of Σ are assigned arity 1.

Equivalently, we can define finite tree automata as term rewrite systems.
This is the approach taken for example in [7]. Given an algebra A, we can
consider ∆A as a ground term rewrite system on TΣ∪|A| in which the equations
are ordered from right to left. This system is unambiguous and terminating,
thus normal forms exist and are unique [4]. By elementary considerations
of term rewrite theory, the terms s and t are congruent modulo ∆A iff they
have the same normal form. For a total algebra A, the ∆A-normal form of
term t is δ(t) ∈ |A|.

3 Free Total Extensions

A partial automaton runs inductively on a ground term in the same way as
a total automaton. However, the reader is probably already asking the obvi-
ous questions what happens when it reaches a situation from which it cannot
continue because the appropriate fA(q1, . . . , qn) is undefined? Informally,
whenever it encounters such a situation, it creates a new state symbolically
and moves to it. In this way a finite partial automaton A gives rise to a
possibly infinite set ̂A of symbolic states that would be created in this way.
The construction of ̂A from A is analogous to the construction of algebraic
extensions of fields or of the rational numbers from the integers where we
wish to extend the structure in the freest possible way so that certain func-
tions are defined. We formalize this idea by the notion of free total extension
of a partial algebra.

Formally, free total extensions are defined in terms of their most salient
property, a universality property similar to that of free algebras.

Definition 4 The free tatal extension of a partial algebra A is defined to
be a total extension ̂A of A such that for any total algebra B and partial
Σ-algebra homomorphism h : A → B, there is a unique Σ-algebra homomor-

8



phism ĥ : ̂A → B such that the diagram

(2)

commutes. ✷

Theorem 5 The free total extension ̂A of a partial Σ-algebra A exist and is
unique up to isomorphism. Moreover, A is the induced partial subalgebra of
̂A on |A|.
Proof. Let ∆A be the diagram of A (Definition 3) and take ̂A = TΣ∪|A|\∆A.

Let ν(t) denote the ∆A-normal form of t ∈ TΣ∪|A| and let [t] denote the con-
gruence class of t modulo ∆A. The canonical map t → [t] restricted to domain
|A| constitutes a partial homomorphism A → A, since if fA(q1, . . . , qn) = q,
then q ≡ fq1 . . . qn ∈ ∆A, therefore

f Â([q1], . . . , [qn]) = [fq1 . . . qn] = [q] . (3)

This map is also one-to-one on A since distinct elements of A have distinct
normal forms (ν(q) = q for q ∈ |A|), therefore occupy distinct ∆A-congruence
classes. By a slight abuse, we may thus consider A � ̂A.

The partial algebra A is the induced partial subalgebra of ̂A on |A|, since
if (3) holds with q1, . . . , qn, q ∈ A, then

ν(fq1 . . . qn) = ν(q) = q ,

thus q ≡ fq1 . . . qn ∈ ∆A, therefore fA(q1, . . . , qn) exists and is equal to q.

If h : A → B is a partial Σ-algebra homomorphism from A to any total
algebra B then let h′ denote the unique homomurphism TΣ∪|A| → B such

that h′(q) = h(q) for q ∈ A. We wish to show that h′ factors through ̂A
giving the following commutative diagram:
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For this purpose it suffices to show that if s ≡ t(∆A) then h′(s) = h′(t).
For any equatian q ≡ fq1 . . . qn ∈ ∆A, we have that fA(q1, . . . , qn) exists and
is equal to q. Then

h′(q) = h(q)

= h(fA(q1, . . . , qn))

= fB(h(q1), . . . , h(qn))

= fB(h′(q1), . . . , h
′(qn))

= h′(fq1 . . . qn) .

Since ∆A is contained in the kernel of h′, so is the congruence generated
by ∆A. Thus s ≡ t (∆A) implies h′(s) = h′(t), and we have a unique map
̂h : ̂A → B that agrees with h on A.

The uniqueness of ̂A up to isomorphism follows directly from the univer-
sality property (2): if ̂A and ̂A′ are two free total extensions of A, then there
are unique homomorphisms between ̂A and ̂A′ in either direction, and these
must be inverses. ✷

We have actually shown that the construction A → ̂A constitutes a left
adjoint to the inclusion functor from the category of total Σ-algebras and
Σ-algebra homomorphisms to the category of partial Σ-algebras and partial
Σ-algebra homomorphisms.

4 Essential Elements

To get a one-to-one correspondence in the Correspondence Lemma, we had
to delete inaccessible states from the automaton. We will have to do that
here as well, but we will also have to delete other states that are inessential
for the construction of the free total extension.
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Intuitively, an element of a total Σ-algebra A is essential if it is a source
of nonfreeness. For example, q is essential if q = fA(p) = gA(r) and f �= g,
or if q = fA(q). This will imply that q must be contained in any partial
subalgebra of A having A as its free total extension. Moreover, we will show
that under a mild restriction on how A is generated, the induced partial
subalgebra of A on the set of its essential elements has A as its free total
extension. Thus the induced partial subalgebra on the essential elements of
A is the unique minimal partial subalgebra of A having A as its free total
extension.

A unary function |A| → |A| is said to be definable (in A) if it is of the
form λx.t where x /∈ Σ is a nullary variable, t is a term over Σ ∪ {x}, and
the function symbols f ∈ Σ occurring in t are interpreted as fA.

Definition 6 Let A be a total Σ-algebra. An element q ∈ A is said to
be essential if any of the following five conditions hold:

(i) q �= fA(q1, . . . , qn) for any n ≥ 0, f ∈ Σn and q1, . . . qn ∈ A
(ii) q = fA(p1, . . . , pm) = gA(q1, . . . , qn) and f �= g

(iii) q = fA(p1, . . . , pn) = fA(q1, . . . , qn and pi �= qi for some i,
1 ≤ i ≤ n

(iv) q = F (q) for some definable unary function F = λx.t on A,
and t �= X

(v) p = F (q) for some definable unary function F on A and p is
essential.
(Note that the definition is inductive because of this clause.)

We define EA to be the induced partial subalgebra of A on the set of essen-
tial elements of A. The partial algebra EA is called the essential subalgebra
of A. An element of a partial algebra A is said to be essential if it is an
essential element of ̂A. (This definition does not conflict if A is total, since
in this case ̂A ∼= A.) ✷

Definition 7 Let A be a total Σ-algebra. A subset Q ⊆ |A| is a gener-
ating set if the canonical map TΣ∪Q → A is onto. The set Q is a minimal
generating set if it is a generating set and no subset of Q is a generating set.

✷
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If A is a partial algebra, then the null set is a generating set of ̂A exactly
when there are no inaccessible elements of A, i.e., when the canonical map
TΣ → ̂A is onto. Of course, in this ease the null set is also a minimal gener-
ating set. Any algebra with a finite generating set has a minimal generating
set. The integers with successor give an example of an algebra with no min-
imal generating set.

Lemma 8 Let A be a total Σ-algebre possessing a minimal generating set
Q. Then every element of Q is essential.

Proff. Let
δ : TΣ∪Q → A

be the canonical map in which δ(q) = q for q ∈ Q. For any q ∈ Q, if the
only term t ∈ TΣ∪Q with q = δ(t) is q itself, then q is essential by Definition
6(i). Otherwise, there exists an n-ary function symbol f for some n ≥ 0 and
terms t1, . . . , tn ∈ TΣ∪Q such that q = δ(ft1 . . . tn). If q occurs some term ti,
then q is essential by Definition 6(iv). If not, then Q − {q} is a generating
set, contradicting the assumption that Q was minimal. ✷

The next theorem justifies the term “essential”. It shows that the essential
elements of a total algebra B must be contained in any partial subalgebra
having B as its free total extension.

Theorem 9 Any partial algebra A contains all essential elements of ̂A.
Moreover, the partial algebra E ̂A is the induced partial subalgebra of A on
the set of essential elements of ̂A.

Proof. Let E = E ̂A, let t → [t] be the canonical map TΣ∪|A| → ̂A, and let
ν(t) denote the ∆A-normal form of t ∈ TΣ∪|A|. We show first that |E| ⊆ |A|.
For any e ∈ |E|, let t ∈ TΣ∪|A| be the unique term in ∆A-normal form with
[t] = e.

If e ∈ |E| because of Definition 6(i), then t must be e itself. Thus e ∈ |A|.
If e ∈ |E| because of Definition 6(ii), then there exist terms fs1 . . . sm and

gt1 . . . tn with
ν(fs1 . . . sm) = ν(gt1 . . . tn) = t .

Since these two terms have distinct head symbols but the same normal form,
we must have t = e ∈ |A|.

If e ∈ |E| because of Definition 6(iii), then there exist terms fs1 . . . sn and
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ft1 . . . tn with
ν(fs1 . . . sn) = ν(ft1 . . . tn) = t

but
ν(si) �= ν(ti)

for some i, 1 ≤ i ≤ n. Again, in order for fs1 . . . sn and ft1 . . . tn to have the
same normal form, we must have t = e ∈ |A|.

If e ∈ |E| because of Definition 6(iv)7 then there exists a term s with
exactly one occurrence of a variable x, but not x itself, such that

ν(s[x/t]) = t .

Since s is not x itself, the depth of s[x/t] is strictly greater than the depth
of t. In order to reduce s[x/t] to t, since t is in normal form, the occurrence
of t in s[x/t] must be an element of |A| and this element must be e.

Finally, if e ∈ |E| because of Definition 6(v), then there exists a term
s with one occurrence of a variable x such that s[x/t] ≡ p (∆A) and p is
essential. By the induction hypothesis, p ∈ |A|, so ν(s[x/t]) = p. Therefore
the occurrence of t in s[x/t] must be an element of |A|, and this element
must be e.

We have shown that |E| ⊆ |A|. Since E is the induced partial subalgebra of
̂A on |E| and A is the induced partial subalgebra of ̂A on |A| (Theorem 5), it

follows that the inclusion map E → A is a partial Σ-algebra homomorphism
and that E is the induced partial subalgebra of A on |E|. ✷

Theorem 10 Let A be a total Σ-algebra with essential subalgebra E = EA.
Then ̂E is embedded isomorphically in A. Moreover, if A contains a minimal
generating set, then ̂E and A are isomorphic.

Proof., By definition, E � A. By Theorem 5, there exists a unique homo-
morphism h : ̂E → A with h the identity on E . We wish to show that h is
injective.

Let h′ : TΣ∪|E| → A be the canonical map with h′(q) = q for q ∈ |E|. We
have the following commutative diagram:
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We wish to show that for any s, t ∈ TΣ∪|E|, if h′(s) = h′(t) then s ≡ t
(∆E).

We show first that if t ∈ TΣ∪|E| is in ∆E -normal form and h′(t) = q ∈ |E|,
then t = q. Suppose for a contradiction that t = ft1 . . . tn, f ∈ Σn, and t is
of minimum depth. Since t is in ∆E -normal form, so are the ti, 1 ≤ i ≤ n,
and

q = h′(ft1 . . . tn)

= fA(h′(t1), . . . , h
′(tn)) .

By Definition 6(v), h′(ti) ∈ |E|, say h′(ti) = qi. Since t was of minimum
depth, ti = qi, 1 ≤ i ≤ n. We thus have

q = fA(q1, . . . , qn) ,

thus
q ≡ fq1 . . . qn ∈ ∆E ,

contradicting the assumption that t was in normal form.

Now let s, t ∈ TΣ∪|E| be in ∆E -normal form, and suppose h′(s) = h′(t). We
proceed by induction on the form of s and t.

If s = q ∈ |E|, then h′(s) = h′(t) = q, thus s = t = q. The argument is
similar for t ∈ |E|. Otherwise, assume neither s nor t is in |E|.

If s = fs1 . . . sm and t = gt1 . . . tn and f �= g, then

fA(h′(s1), . . . , h
′(sm)) = h′(fs1 . . . sm)

= h′(gt1), . . . , tn)

= gA(h′(t1), . . . , h
′(tn)) ,
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and h′(s) ∈ |E| by Definition 6(ii), contradicting the assumption that h′(s) /∈
|E|.

If s = fs1 . . . sn and t = ft1 . . . tn, and if some h′(si) �= h′(ti), then we
obtain a contradiction as in the previous case, using Definition 6(iii).

Thus we are left with the case s = fs1 . . . sn, t = ft1 . . . tn, and h′(si) =
h′(ti), 1 ≤ i ≤ n. By the induction hypothesis, si ≡ ti (∆E), 1 ≤ i ≤ n,
therefore: s ≡ t (∆E).

If A contains a minimal generating set Q, then Q ⊆ E by Lemma 8, thus E
is also a generating set. Since E also generates ̂E the map h is onto in this case.

Corollary 11 Let A be a total Σ-algebra possessing a minimal generating
set. Up to isomorphism, the essential EA of A is the unique minimal partial
algebra having free total extension A.

The corollary is not true in general for algebras not possessing a minimal
generating set. For example, consider a nonstandard model of the natural
numbers with 0 and successor and the usual Peano axioms over this signa-
ture. There is no minimal set generating the nonstandard elements, and
there are no essential elements. Thus the free total extension of the essential
subalgebra consists of the standard natural numbers.

5 Partial Automata and Congruences

The following theorem our generalized version of the Correspondence Lemma.

Theorem 12 Up to isomorphism, there is a one-to-one correspondence be-
tween (finitely generated) congruences on TΣ and (finite) partial automata
over TΣ with no inaccessible and no inessential states.

Proof. We establish a one-to-one correspondence between congruences on
TΣ and partial Σ-algebras with no inaccessible and no inessential elements,
and show that a congruence is finitely generated iff its corresponding partial
algebra is finite.

For a congruence ≡ on TΣ, let E = E(TΣ/ ≡) be the essential subalgebra
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of the quotient TΣ/ ≡. Since the canonical map TΣ → TΣ/ ≡ is onto, TΣ/ ≡
has minimal generating set ∅. By Theorem 10,

̂E ∼= TΣ/ ≡ ,

therefore E has no inessential or inaccessible elements. Thus the map

≡ → E(TΣ/ ≡) (4)

takes congruences on TΣ to partial Σ-algebras with no inaccessible and no
inessential elements.

Conversely, let A be a partial Σ-algebra with no inaccessible and no
inessential elements, and let ∼A be the kernel of the canonical map δ : TΣ →
̂A. This construction gives a map

A → ∼A (5)

from partial Σ-algebras with no inaccessible and no inessential elements to
congruences on TΣ.

We now show that the maps (4) and (5) are inverses up to isomorphism.
For any congruence ≡ on TΣ, let E = E(TΣ/ ≡). Then ≡ and ∼E are the
same relations since δ is the unique homomorphism

δ : TΣ → ̂E ∼= TΣ/ ≡ .

Conversely, for any partial Σ-algebra A with no inaccessible or inessential
elements, we wish to show that A and E = E(TΣ/ ∼A) are isomorphic. We
have by Theorem 9 that E ̂A is the induced partial subalgebra of A on |E|.
Since A has no inessential elements,

A ∼= E ̂A .

Since A has no inaccessible elements, the canonical map δ : TΣ → ̂A is onto,
thus

̂A ∼= TΣ/ ∼A ,

therefore
E ̂A ∼= E(TΣ/ ∼A) .

Finally, we show
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(i) if A is finite, then ∼A is finitely generated

(ii) if Γ is a finite relation on TΣ then E(TΣ/Γ) is finite.

First (i). If A is finite, then so is ∆A. Since δ : TΣ → ̂A is onto, for each
q ∈ |A| there exists a η(q) ∈ TΣ such that δ(η(q)) ≡ q (∆A). The map η
extends uniquely to a homomorphism η : TΣ∪|A| → TΣ, and by uniqueness of
the maps we have that the diagram

commutes. Thus for s, t ∈ TΣ∪|A|,

s ≡ t(∆A) ↔ [s] = [t]

↔ δ(η(s)) = δ(η(t))

↔ η(s) ∼A η(t) .

We now show that ∼A) is generated by the finite relation

η(∆A = {η(s) ≡ η(t) | s ≡ t ∈ ∆A}

on TΣ. Certainly the congruence on TΣ generated by η(∆A) is contained in
∼A since η(∆A) is, and a straightforward inductive argument shows that for
any s, t ∈ TΣ∪|A|,

s ≡ t(∆A) → η(s) ≡ η(t) (η(∆A)) .

In particulars for s, t ∈ TΣ, we have s = η(s) and t = η(t), thus

s ∼A t ↔ s ≡ t(∆A)

↔ s ≡ t(η(∆A)) .

To show (ii), let Γ be a finite relation on TΣ. Define a finite partial Σ-
algebra A as follows. Let t → [t] be the canonical map TΣ → TΣ/Γ. Call the
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term t present in Γ if t is a subterm of some u or v appearing in an equation
u ≡ v ∈ Γ. Let A be the induced partial subalgebra of TΣ/Gamma on the
set

{[t] | t is present in Γ} .

By Theorem 5, the inclusion map A → TΣ/Γ extends uniquely to a homo-
morphism h : ̂A → TΣ/Γ. Let δ be the canonical map TΣ → ̂A. We have the
commutative diagram

We show that h is an isomorphism. It is certainly onto, since [ ] is. To
show that it is one-to-one, it suffices to show that δ is onto and for s, t ∈ TΣ,
s ≡ t (Γ) implies δ(s) = δ(t).

A straightforward inductive argument shows that δ(t) = [t] for t present
in Γ: if ft1 . . . tn is present in Γ then

[ft1 . . . tn] ≡ f [t1] . . . [tn] ∈ ∆A ,

therefore

δ(ft1 . . . tn) = f Â(δ(t1), . . . , δ(tn))

= f Â([t1)], . . . , [tn])

= [ft1 . . . tn] .

Since ̂A is generated by |A|, δ is onto. Now if s ≡ t ∈ Γ, then [s] = [t] ∈ |A|,
and δ(s) = δ(t) = [s]. Since the relation Γ is contained in the kernel of δ so
is the congruence generated by Γ. Thus s ≡ t (Γ) implies δ(s) = δ(t).

By Theorem 9, the essential subalgebra E(TΣ/Γ) is contained in A and is
therefore finite. ✷

The following theorem was essentially proved in [9] and [10, Lemma 25],
to which we refer the reader for the algorithm and proof of correctness.
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Theorem 13 ([9, 10]) Given any finite relation Γ on TΣ, the diagram ∆E
of E = E(TΣ/Γ) can be produced from Γ in polynomial time.

By Corollary 11, ∆E gives a canonical presentation of the finitely presented
algebra TΣ/Γ.

6 A Counterexample

Let R be an equivalence relation on TΣ. Although the relation ≡R is the
coarsest congruence refining R, it may not be finitely generated, even though
there always exists a finitely generated congruence refining R (namely the
identity). Thus the analog of clause (iii) in the statement of the Myhill-
Nerode Theorem fails for partial automata.

It suffices to construct a congruence R on TΣ that is not finitely generated
(then ≡R and R coincide). Suppose we have a single nullary operator c and
two unary operators f and g. Define |c| = 0 and |ft| = |gt| = 1 + |t|. Let Γ
be the set

Γ = {s ≡ t | |s| = |t| and |s| is even}
and let R be the congruence generated by Γ. Then TΣ/Γ looks like this:

The congruence R is not finitely generated, since any finite subrelation ∆
of R is contained in the congruence generated by some Γn, where

Γn = {s ≡ t | |s| = |t| ≤ n and |s| is even} ,

thus TΣ/∆ is a homomorphic preimage of TΣ/Γn, which looks like this:
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7 Applications to Term Rewrite Systems

Theorems 12 and 13 have the following application to term rewrite systems.
Suppose we are given a ground term rewrite system over Σ. Let Q be a new
set of auxiliary constants disjoint from Σ. Let us call a ground term rewrite
system over Σ ∪ Q simple if

• all rules are of the form fq1 . . . qn → q, where q1 . . . qn, q,∈ Q and
f ∈ Σn;

• the system is unambiguous in the sense that there are no overlapping
redexes.

A system over Σ∪Q is said to be equivalent to the original system over Σ if
they induce the same congruence on TΣ.

Theorems 12 and 13 have the following interpretation in this context:

Corollary 14 For every ground term rewrite system Γ over Σ, there is
a unique minimal simple system Γ′ equivalent to Γ. Moveover, Γ′ can be
constructed from Γ in polynomial time.

The system Γ′ is of course just ∆E , where E is the essential subalgebra of
TΣ/Γ.

It was shown in [9, 10] that the problem of isomorphism of finitely presented
algebras is equivalent to the problem of graph isomorphism. Essentially,
Corollary 11 says that a finitely presented Σ-algebra is uniquely represented
by its essential subalgebra, which is uniquely represented by its diagram,
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which in turn can be represented as a labeled graph in a straightforward way.
Conversely, the graph isomorphism problem is easily encoded as a problem
of isomorphism of finitely presented algebras [9, 10].

In the construction given in [9, 10], it is readily observed that the degree
of the graph is linear in the maximum arity in Σ; thus using a result of Luks
[12], there is a polynomial time algorithm to decide equivalence of ground
term rewriting systems over Σ of bounded arity. In the case of unbounded
arity, the problem is as hard as determining the isomorphism of graphs of
unbounded degree.
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