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Set constraints are inclusion relations between expressions denoting
sets of ground terms over a ranked alphabet. They are the main ingredient
in set-based program analysis. In this paper we describe a constraint logic
programming language CLP(SC) over set constraints in the style of J. Jaffar
and J.-L. Lassez (1987, ``Proc. Symp. Principles of Programming Languages
1987,'' pp. 111�119). The language subsumes ordinary logic programs over
an Herbrand domain. We give an efficient unification algorithm and opera-
tional, declarative, and fixpoint semantics. We show how the language can be
applied in set-based program analysis by deriving explicitly the monadic
approximation of the collecting semantics of N. Heintze and J. Jaffar (1992,
``Set Based Program Analysis''; 1990, ``Proc. 17th Symp. Principles of
Programming Languages,'' pp. 197�209). ] 1998 Academic Press

1. INTRODUCTION

Set constraints are inclusion relations between expressions denoting sets of ground
terms over a ranked alphabet 7. The language of set constraints contains the usual
Boolean operators along with a set operator f for each n-ary f # 7 with interpretation

f (A1 , ..., An)=[ f (t1 , ..., tn) | ti # Ai , 1�i�n].

In set-based program analysis [4, 5, 15, 16, 19, 23, 24, 26], set constraints are used
to represent monadic properties of program variables; all interdependencies are
ignored. Although information is lost, enough is retained to allow useful program
optimization and type inference, and the resulting systems remain decidable [2, 3,
6, 7, 9, 13, 14, 27].

Heintze and Jaffar [16] and Heintze [15] applied set-based program analysis in
both the imperative and logic programming settings. They first give a least fixpoint
characterization of the sets of valuations of program variables that can occur at
each point in a program during execution; this is called the collecting semantics.
These sets are of course nonrecursive. They then give a monadic approximation to
the collecting semantics in which variable dependencies are ignored. This gives a
superset of the actual set of values, but one can still derive useful inferences about
program behavior, and the sets of values obtained are recursive. The monadic
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approximation has a least fixpoint characterization almost identical to the charac-
terization of the collecting semantics, except that the basic operators are interpreted
as set operators.

One might desire a language in which algorithms in set-based program analysis
can be easily expressed. In this paper we introduce a logic programming language
clp(sc) for this purpose. The language clp(sc) is a constraint logic programming
language in the style of Jaffar and Lassez [17] using set constraints over an
Herbrand domain.

Sets of ground terms satisfy many nice algebraic properties. An axiomatization of
these properties was proposed in [20] (see Sect. 2.1 below). Models of these axioms
are called termset algebras. The axioms of termset algebras are reminiscent of the
Clark axioms for Herbrand domains; in fact, constraint logic programming over set
constraints and conventional logic programming over Herbrand domains have much
in common. In many ways, one can think of clp(sc) as an intermediate stage between
logic programming over an Herbrand domain and constraint logic programming in
general.

The language clp(sc) subsumes ordinary logic programming over an Herbrand
domain, since ground terms can be identified with singleton sets, and singleton sets
are definable in clp(sc).

There have been several previous approaches to augmenting logic programming
languages with sets. Jayaraman and Plaisted [18] presented a language in the equa-
tional programming style which combines relational, subset, and equational assertions.
Operational and fixpoint semantics are given. A collect all property is posed as part
of the semantics, which plays the same role as minimal models or least fixpoints in
logic programming. Kuper [22] presented a language with two types of objects,
individuals and sets, and a membership predicate. Program clauses

A :&\x1 # X1 } } } \xn # Xn B1 , ..., Bm .

are allowed, where the Xi are terms denoting finite sets. Kuper mentions a suitable
treatment of negation as an important open problem. Dovier et al. [10] presented
a language with membership and equality predicates for finite sets and a constructor
with for adding new elements to sets. Constraints are used in the unification process.
Stolzenburg [28, 29] introduced a logic programming language with finite sets in
which membership is dealt with via constraints. These approaches concentrate on
the set unification problem.

Our approach differs from these in several ways. We have only one type of
object, namely sets of ground terms, and no explicit membership predicate. Single
ground terms are identified with singleton sets, and the membership predicate is
encoded using the subset predicate. The domain of computation consists of all regular
sets of ground terms, including infinite regular sets. Any such set can be uniquely
specified by a finite collection of set constraints. All Boolean operations, including
negation, are allowed. Negations are dealt with using a generalized DeMorgan law.

Fru� hwirth et al. [12] have also shown how to express the monadic approxima-
tion using logic programs. However, their approach is quite different: they transform
a given logic program into another logic program such that the latter computes
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exactly the monadic approximation of the former. They work with a conventional
logic programming language over an Herbrand domain and do not discuss set
constraints.

The present paper is organized as follows. In Section 2, we review the basic
theory of set constraints. In Section 3, we describe the syntax of the language
clp(sc) and give three equivalent semantics: operational, fixpoint, and declarative.
In Section 4, we discuss techniques for solving set constraints, including the defini-
tion of a useful normal form. In Section 5, we give a unification algorithm based on
the constraint satisfaction algorithm of [3] as well as some heuristics which may
improve performance. Finally, in Section 6, we show how the language can be applied
in set-based program analysis by deriving explicitly the monadic approximation to
the collecting semantics of Heintze and Jaffar [15, 16].

2. SET EXPRESSIONS AND SET CONSTRAINTS

Let 7 be a finite ranked alphabet consisting of symbols f, each with an associated
arity. Symbols in 7 of arity 0, 1, 2, 3, and n are called nullary, unary, binary,
ternary, and n-ary, respectively. Nullary elements are often called constants. The set
of elements of 7 of arity n is denoted 7n . The use of any expression of the form
f (x1 , ..., xn) in the paper carries the implicit assumption that f is of arity n.

The set of ground terms over 7 is denoted T7 . This is the smallest set such
that if t1 , ..., tn # T7 and f # 7n , then f (t1 , ..., tn ) # T7 . If X=[x, y, ...] is a set of
variables, then T7(X ) denotes the set of terms over 7 and X, considering the
elements of X as symbols of arity 0.

Let B=( _ , & , t , 0, 1) be the usual signature of Boolean algebra. Other Boolean
operators such as & (set difference) and � (symmetric difference) are defined from
these as usual. Let 7+B denote the signature consisting of the disjoint union of 7
and B. A set expression over variables X is any element of T7+B(X ). The following
is a typical set expression,

f (g(x _ y), tg(x & y)) _ a,

where f # 72 , g # 71 , a # 70 , and x, y # X. A Boolean expression over X is any
element of TB(X ).

A positive set constraint is a formal inclusion s�t, where s and t are set expressions.
We also allow equational constraints s=t, although inclusions and equations are
interdefinable: s�t is equivalent to s _ t=t, and s=t is equivalent to s� t�0.
A negative set constraint is the negation of a positive set constraint: s�3 t or s{t.

We interpret set expressions over the powerset 2T7 of T7 . This forms an algebra
of signature 7+B, where the Boolean operators have their usual set-theoretic
interpretations and elements f # 7n are interpreted as functions

f : (2T7 )n � 2T7

(1)
f (A1 , ..., An)=[ f (t1 , ..., tn ) | ti # Ai , 1�i�n].

Later, we will restrict our attention to the subalgebra Reg7 of regular subsets of T7 .
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A set valuation is a map _ : X � 2T7 assigning a subset of T7 to each vari-
able in X. Any set valuation _ extends uniquely to a (7+B)-homomorphism
_ : T7+B(X ) � 2T7 by induction on the structure of set expressions in the usual way.
We say that the set valuation _ satisfies the positive constraint s�t if _(s)�_(t)
and satisfies the negative constraint s�3 t if _(s)�3 _(t). We write _ < . if the set
valuation _ satisfies the constraint .. A system C of set constraints is satisfiable if
there is a set valuation _ that satisfies all the constraints in C; in this case we write
_ < C and say _ is a solution of C.

2.1. Axioms of Termset Algebra

In [20], the following axiomatization of the algebra of sets of ground terms was
introduced:

f (..., x _ y, ...)=f (..., x, ...) _ f (..., y, ...) (2)

f (..., x& y, ...)=f (..., x, ...)& f (..., y, ...) (3)

.
f # 7

f (1, ..., 1)=1 (4)

f (1, ..., 1) & g(1, ..., 1)=0, f{ g (5)

f (x1 , ..., xn)=0 � �
n

i=1

(xi=0), (6)

as well as the axioms of Boolean algebra. The ellipses in (2) and (3) indicate that
the explicitly given arguments occur in corresponding places and that implicit
arguments in corresponding places agree. Models of these axioms are called termset
algebras.

The standard interpretation 2T7 forms a model of these axioms. Another model
is given by the subalgebra Reg7 of regular subsets of T7 .

Some immediate consequences of these axioms are

f (..., 0, ...)=0 (7)

f (..., tx, ...)=f (..., 1, ...)& f (..., x, ...) (8)

f (..., x�y, ...)=f (..., x, ...)� f (..., y, ...) (9)

f (..., x & y, ...)=f (..., x, ...) & f (..., y, ...) (10)

x�y O f (..., x, ...)�f (..., y, ...). (11)

One particularly important consequence is the generalized DeMorgan law:

tf (x1 , ..., xn)= .
g{f

g(1, ..., 1) _ .
n

i=1

f (1, ..., 1
i&1

, txi , 1, ..., 1
n&i

). (12)

This law is useful in pushing occurrences of the negation operator t down to the
leaves of a term. This law can be justified intuitively as follows. The expression
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f (x1 , ..., xn) denotes the set of all ground terms with head symbol f and i th subterm
satisfying xi . A term is not of this form if either its head symbol is not f (hence the
first clause on the right-hand side of (12)) or its head symbol is f, but its i th sub-
term does not satisfy xi for some i (hence the second clause on the right-hand side).
Formally, the law can be derived from the termset algebra axioms by purely equa-
tional reasoning.

3. clp(sc)

In this section we describe a logic programming language clp(sc), a constraint
logic programming language in the style of Jaffar and Lassez [17] over set
constraints. We describe the syntax of the language and give three equivalent
semantics: operational, declarative or model-theoretic, and fixpoint. The equiv-
alence of these three semantics follows from standard results and techniques of
constraint logic programming [17].

3.1. Examples

Before describing the syntax and semantics of the language clp(sc), here are
some sample programs to whet the intuition.

v Consider the clauses

sng(a).
sng( f (x1 , ..., xn)) :&sng(x1), ..., sng(xn).

for all constants a # 7 and function symbols f # 7 of arity n�1. The goal sng(x)
succeeds iff x is a singleton set.

v For the goal empty(x) to succeed iff x is the empty set:

empty(0).

v For the goal nonempty(x) to succeed iff x is not the empty set:

nonempty(x) :&y�x, sng( y).

v For the goal equal(x, y) to succeed iff x and y are equal as sets:

equal(x, x).

v For the goal unequal(x, y) to succeed iff x and y are unequal as sets:

unequal(x, y) :&nonempty(x�y).

v For the goal dbl(x) to succeed iff x is a doubleton set:

dbl( y _ z) :&unequal( y, z), sng( y), sng(z).

6 DEXTER KOZEN
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v For the goal atleast2(x) to succeed iff x contains at least two elements:

atleast2(x) :&y�x, dbl( y).

Ordinary logic programming over the Herbrand domain T7 is subsumed, since
ground terms can be identified with singleton sets, which are definable using sng(x).
The membership predicate is encoded using the subset predicate. Negative constraints
are also obviated by the use of sng(x), using the fact that a set is nonempty iff it
includes a singleton subset (although this in itself does not give a decision procedure
for negative constraints).

3.2. Syntax of clp(sc)

Let 6=[ p, q, r, ...] be a ranked alphabet of relation symbols not containing =
or �, each with a fixed finite arity. Let 6n denote the set of elements of 6 of
arity n. An atomic formula is an expression of the form p(u� ), where p # 6n and
u� =u1 , ..., un is an n-tuple of set expressions. A program clause is either

A.

A :&B1 , ..., Bn .,

where A is an atomic formula and the Bi are either atomic formulas or positive set
constraints. A program ? is a set of program clauses. A query is an expression of
the form

?&B1 , ..., Bn .

where the Bi are either atomic formulas or positive set constraints.

3.3. Regular Sets

A subset of T7 is regular if it is described by a finite tree automaton; equivalently,
if it is some set x1 described by a system of simultaneous set equations of the form

x1=s1(x1 , ..., xm)

x2=s2(x1 , ..., xm)
(13)

b

xm=sm(x1 , ..., xm),

in which each variable xi occurs on the left-hand side of exactly one equation and
each right-hand side is a disjunction of set expressions of the form f (y1 , ..., yn),
where f # 7n and yi # [x1 , ..., xm], 1�i�n. It can be proved by induction on the

7SET CONSTRAINTS AND LOGIC PROGRAMMING



File: DISTL2 269407 . By:CV . Date:16:03:98 . Time:14:24 LOP8M. V8.B. Page 01:01
Codes: 3205 Signs: 2365 . Length: 52 pic 10 pts, 222 mm

depth of terms that any such system has a unique solution (see [11]). The family
of regular sets over 7 is denoted Reg7 . For example, the system

x=a _ g( y) y= g(x) (14)

has the unique regular solution

_(x)=[gn(a) | n even] _( y)=[gn(a) | n odd].

Gilleron et al. [13] have shown that every satisfiable system of set constraints
has a regular solution, i.e., one in which all variables are interpreted as regular sets.
We give an alternative proof of this fact below (Theorem 7).

For our domain of computation we take the family Reg7 of regular subsets of T7 .
We contend that this domain in the present context is analogous to the Herbrand
universe in ordinary logic programming. One might alternatively consider the sets
represented by the family of ground set expressions, i.e., elements of T7+B . How-
ever, this set is too small, because there are satisfiable systems of set constraints
with no solution in T7+B : (14), for example. On the other hand, the entire power
set of T7 is too big, since there are subsets of T7 that are not represented by any
finite system of set constraints.

The choice of the regular sets as domain of computation allows us to think
conveniently in terms of a generalized notion of substitution: if A is any expression
involving the set variables x� =x1 , ..., xn, and if d� =d1 , ..., dn is an n-tuple of regular
sets described uniquely by a finite system C of set constraints of the form (13), then
the ``substitution instance'' A[x� �d� ] can be expressed syntactically by conjoining C

and A.
The domain of regular sets also satisfies the two fundamental desiderata for

constraint logic programming languages as set forth in [17], namely:

v Every element of the domain is the unique solution of a finite or infinite
family of constraints. In fact, every regular set is the unique solution of a finite
family of constraints of the form (13).

v Every element not satisfying a constraint C satisfies some constraint C$ such
that the conjunction C, C$ is unsatisfiable. This property follows immediately from
the fact that every regular set is the unique solution of a single constraint obtained
by combining the constraints (13):

.
m

i=1

(xi�si (x1 , ..., xm))=0.

3.4. Operational Semantics

In the following, C, C$ denote finite systems of set constraints; B, B$ finite lists
of atomic formulas; p an element of 6n ; s� , t� n-tuples of set expressions; and ? a
program.

8 DEXTER KOZEN
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Following [17], our operational semantics involves sequences of one-step
derivations of the form

p(s� ), B, C w�1
?

s� =t� , B, B$, C, C$, (15)

which reduces the goal on the left-hand side to the goal on the right-hand side
whenever

v there is a fresh instantiation

p(t� ) :&B$, C$.

of a program clause in ? obtained by substituting new variables; and

v the constraint system s� =t� , C, C$ is satisfiable.

There is no implied ordering of the atomic formulas in a goal; any one may be
chosen for expansion at any time.

We say that the query

?&B, C. (16)

succeeds if there is a sequence

B, C w�?* C$ (17)

of such one-step derivations eliminating all atomic formulas, and C$ is satisfiable.

Here w�?* denotes the reflexive transitive closure of w�1? . If _ is a set valuation, we

say that the query (16) succeeds with _ if there is a derivation (17) with _ < C$.
Note that _ also satisfies the original constraint system C.

3.5. Declarative Semantics

Let

2=[p(d� ) | n�0, p # 6n , d� # Regn
7].

The set 2 corresponds to the Herbrand base of ordinary logic programming.
We consider first-order structures M with carrier Reg7 , set operations and

relations _ , & , t , 0, 1, =, � with their usual interpretations, f # 7 with
set-theoretic interpretation (1), and interpretations of relation symbols in 6
specified by some subset 2M of 2. If _: X � Reg7 , we write

M, _ < ,

if M satisfies the first-order formula . under valuation _ in the ordinary sense of
first-order logic. We write M < ? if M satisfies the clauses in the program ?,
considered as universally quantified Horn clauses of first-order logic.

9SET CONSTRAINTS AND LOGIC PROGRAMMING
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3.6. Fixpoint Semantics

For 1�2, let T?(1 ) be the set of all p(d� ) # 2 such that there exists a program
clause

A :&B1 , ..., Bm , C.

in ? and a set valuation _: X � Reg7 such that

v Bi[x� �_(x� )] # 1, 1�i�m

v _ < C, and

v p(d� )=A[x� �_(x� )].

The map T? : 22 � 22 is monotone with respect to set inclusion and therefore by
the Knaster�Tarski theorem has a least fixpoint 2? . Let M? be the model specified
by 2? as described in Section 3.5; i.e., 2M?=2? .

The following results assert the equivalence of these three semantics. The proofs
are standard, using results and techniques of logic programming and constraint
logic programming [17].

Lemma 1. The set 2M is a prefixpoint of T? (i.e., T?(2M)�2M) if and only
if M < ?.

By the Knaster�Tarski theorem, the least prefixpoint of T? is also its least fixpoint.
It follows that M? is the minimal model of ?.

Theorem 2. Let B be a finite list of atomic formulas, C a finite system of set
constraints, d� =d1 , ..., dm # Reg7 , _ a partial set valuation such that _(xi )=di ,
1�i�m, where x� =x1 , ..., xm is a list of variables including all those occurring in B

and C, and D a system of set constraints of the form (13) defining the substitution
[x� �d� ] uniquely.

The following statements are equivalent:

(i) M? , _ < B 7 C;

(ii) the query ?&B, C. succeeds with some extension _$ of _;

(iii) the query ?&B, C, D. succeeds;

(iv) _ < C, and for every clause Bi in B, Bi[x� �d� ] # 2? .

4. EFFICIENT CONSTRAINT SOLVING

4.1. Atomic Form and Hypergraphs

In this section we describe a convenient normal form for systems of constraints
called atomic form. This normal form corresponds to the combinatorial method
of [2, 3, 20] involving hypergraphs. It is also strongly related to the automata-
theoretic approach of [13, 14] and to the approach of [7] involving finite models
of monadic logic.

10 DEXTER KOZEN
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Definition 3. A system of set constraints is in atomic form if

v the variables are partitioned into two disjoint sets U and X, called the atoms
and primary variables, respectively,

v there is a subset Ef (u� )�U for each f # 7n and u� # U n, and

v there is a subset P(x)�U for each x # X,

such that the system consists of constraints

.
u # U

u=1 (18)

u & v=0, for distinct u, v # U (19)

f (u� )� .
u # Ef (u� )

u (20)

x= .
u # P(x)

u, x # X, (21)

where any f (u� ) appears on at most one left-hand side of a constraint of the form
(20). We take Ef (u� )=U for expressions f (u� ) not appearing on the left-hand side of
any constraint (20); this implicitly asserts the redundant constraint f (u� )�1.

The tuple (U, X, E, P) specifies a system of set constraints in atomic form,
where U is the set of atoms, X the set of primary variables, E specifies the maps
Ef : U n � 2U, and P gives the sets P(x).

The clauses (18) and (19) say that the atoms form a finite partition of T7 . As in
[2, 3], we can regard such a system as a hypergraph on vertices U with hyperedge
relations

Ef : Un � 2U,

one for each f # 7n . For constants a # 70 , Ea is a subset of U, unary g # 71 give rise
to ordinary binary edge relations, binary f # 72 give rise to ternary hyperedge
relations, etc. This structure can also be regarded as a nondeterministic finite tree
set automaton [13, 14].

Definition 4 [2]. The hypergraph corresponding to a system of set constraints
in atomic form is said to be closed if every Ef (u� ) is nonempty. The hypergraph is
said to have a closed induced subhypergraph if there is a subset V�U such that for
every f # 7n and every n-tuple u� # Vn, the set Ef (u� ) intersects V.

The notion of closure is captured axiomatically by (6) [20].

Definition 5. A run is a map %: T7 � U such that for all f (t1 , ..., tn ) # T7 ,

%( f (t1 , ..., tn )) # Ef (%(t1), ..., %(tn)). (22)

The run % corresponds to an infinite run of a tree set automaton in the automata-
theoretic approach of [13, 14].

The following theorem was proved in [2].

11SET CONSTRAINTS AND LOGIC PROGRAMMING
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Theorem 6 [2]. Let C=(U, X, E, P) be a system of set constraints in atomic
form considered as a hypergraph as described above. The following three statements
are equivalent:

(i) C has a closed induced subhypergraph;

(ii) there exists a run %: T7 � U;

(iii) C is satisfiable.

Proof sketch. (i) � (ii) The existence of a closed induced subhypergraph on
atoms V allows us to assign an atom %(t) # V to each ground term t # T7

inductively such that (22) holds.

(ii) � (iii) Given a run %, a set valuation _ satisfying C can be obtained by
setting

_(x)=%&1(P(x)) _(u)=%&1([u]). (23)

(iii) � (i) Given valuation _ satisfying C, take V=[u # U | _(u){<]. K

If there is a closed induced subhypergraph not containing some atom u, then u
is not needed to construct a run %, and its removal does not affect satisfiability. We
will often (but not always) want to annihilate such atoms. This is done formally by
imposing the extra set constraint u=0, then using property (7) and Boolean algebra
to construct an equisatisfiable system in atomic form in which the atom u does not
appear. For each occurrence of u on the left-hand side of a constraint (20), by (7)
that constraint is immediately satisfied and may be deleted. Any other occurrence
of u may then be deleted, since it only appears in disjunctions. We are left with a
smaller system in atomic form.

4.2. Reduction to Atomic Form

Every system of set constraints can be put into atomic form effectively with at
most an exponential increase in size. Here is an algorithm, which is essentially the
same as the normal form algorithm of [2].

Let X be the set of variables appearing in the original system. These are the
primary variables.

Algorithm 1. (1) Replace any subexpression f (t1 , ..., tn ) by x and add
constraints

x=f ( y1 , ..., yn)
(24)

yi =ti , 1�i�n,

where x, y1 , ..., yn are new auxiliary variables. This is called flattening. Repeat until
the system consists of purely Boolean constraints and constraints of the form (24).

(2) Replace each constraint of the form (24) by two inclusions

f ( y1 , ..., yn)�x tf ( y1 , ..., yn)�tx. (25)

12 DEXTER KOZEN
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(3) Apply the generalized DeMorgan law (12) to the left-hand side of (25) to
get the equivalent inclusion

.

g{f
g # 7

g(1, ..., 1) _ .
n

i=1

f (1, ..., 1
i&1

, tyi , 1, ..., 1
n&i

)� tx,

then rewrite this as separate inclusions

g(1, ..., 1)� tx, g{ f

f (1, ..., 1
i&1

, tyi , 1, ..., 1
n&i

)� tx, 1�i�n.

All constraints are now either purely Boolean or of the form

f (x1 , ..., xn)�x, (26)

where x, x1 , ..., xn are positive or negative literals or the constant 1.

(4) Let Y be the set of variables in use at this point. This includes the
primary variables X and all auxiliary variables added in step (1). Let B be the set
of purely Boolean constraints on Y constructed in step (1). Introduce a new set of
variables U called atoms, one for each atom of the free Boolean algebra on gener-
ators Y modulo B; equivalently, one for each truth assignment to Y satisfying B.
For x # Y, let P(x) be the set of all u # U such that the truth assignment corre-
sponding to u satisfies x. Replace the constraints B with the constraints (18), (19),
and (21) for each x # Y.

(5) In constraints of the form (26), replace each positive literal x with
�u # P(x) u, each negative literal tx with �u � P(x) u, and each occurrence of the
constant 1 with �u # U u. Apply (2) to express each left-hand side as a union of
expressions of the form f (u1 , ..., un). Separate each resulting constraint

.
u� # A

f (u� )� .
u # E

u

into a finite collection of constraints

f (u� )� .
u # E

u, u� # A.

(6) Collect all constraints with the same left-hand side,

f (u� )� .
u # E

u, E # E,

and let Ef (u� )=� E. Replace these constraints with the single equivalent
constraint (20).

13SET CONSTRAINTS AND LOGIC PROGRAMMING
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(7) Remove all constraints of the form (21) for auxiliary variables, i.e.,
those in Y&X. They are no longer needed (and trivially satisfiable if the rest of the
system is).

The resulting system is in atomic form and is equivalent to the original.
One can still reduce the size of the system by annihilating atoms u that are

inaccessible in the automata-theoretic sense, since they will never be chosen in the
construction of the run % in Theorem 6. Formally,

(8) Let W be the smallest set closed under the following operation: if u� # Wn

then Ef (u� )�W. Annihilate all atoms u # U&W. If U has a closed induced sub-
hypergraph on atoms V, then the induced subhypergraph on atoms V & W is also
closed, therefore by Theorem 6 the new system is satisfiable iff the old one was.

4.3. Testing Satisfiability

If the system C of set constraints in atomic form is not closed, then there is some
constraint of the form

f (u1 , ..., un)�0. (27)

Property (6) then implies that any satisfying valuation must have ui=0 for some
i, 1�i�n. We can pick some ui and annihilate it as described above. However, if
some Eg(u� )=[ui], then this last action causes the right-hand side of another
constraint (20) to vanish, in which case the process must be repeated. If this process
ever stabilizes in a system in atomic form in which every Ef (u� ) is nonempty, then
we have found a closed induced subhypergraph, and by Theorem 6 the system is
satisfiable.

The choice of ui to annihiliate is inherently a nondeterministic process. No
algorithm that is significantly more efficient in the worst case is likely to be found,
since the general satisfiability problem is nondeterministic exponential-time
complete [2, 7], and even NP-complete when the system is in atomic form.
However, if there are no operators of arity two or greater, then there is no
nondeterministic choice to be made and the process becomes deterministic. This is
the essence of the proof of the result of [2] that the satisfiability problem can be
solved in deterministic exponential time in this case.

Even in the presence of operators of arity two or greater, the following greedy
heuristic may be useful in improving performance: always annihilate the ui that
removes the largest number of constraints (20) with 0 on the right-hand side.

Aiken [1] also suggested the following heuristic: keep track of atoms that are
necessary to the solution. For example, if u� =u1 , ..., un are all necessary and
Ef (u� )=[u$], then u$ is necessary. Necessary atoms should never be annihilated.
Initially, few, if any, atoms will be necessary. However, as choices are made about
which atoms to annihilate, the set of necessary atoms will increase, leading to more
deterministic search in later steps.

14 DEXTER KOZEN
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4.4. Regular Solutions

In this section we give an alternative proof of a result of Gilleron et al. [13] that
we can restrict our attention to regular solutions of systems of set constraints. This
result is essential in the semantics of clp(sc).

Theorem 7 [13]. Every satisfiable system of set constraints has a regular solution.

Proof. Let C be a satisfiable system of set constraints in atomic form. By
Theorem 6, the associated hypergraph contains a closed induced subhypergraph;
i.e., one can annihilate atoms u to obtain an equisatisfiable system in atomic form
in which all Ef (u� ) are nonempty. Now perform the following steps in order:

(1) Delete all atoms but one from each Ef (u� ).

(2) Annihilate all atoms except those appearing on the right-hand sides of
inclusions (20).

(3) Combine all constraints (20) with the same right-hand side u into a single
constraint whose left-hand side is the disjunction of the left-hand sides of all
constraints with right-hand side u.

(4) Change all inclusions to equalities.

Each step in the above process strengthens the system (annihilation of u is tantamount
to adding the constraint u=0), so any solution of the resulting system is also a
solution of the original system C. The resulting system of equations (20) is of the
form (13), which has a unique regular solution (see [11]). Moreover, every f (u� )
occurs in exactly one equation (20); this implies that (18) and (19) hold as well.

This procedure constructs a closed subhypergraph (not necessarily induced) in
which all Ef (u� ) are singletons, which can be viewed as a deterministic tree set
automaton. K

5. EFFICIENT UNIFICATION

In constraint logic programming, unification is just conjunction of constraints. In
our case, however, we wish to maintain constraints in atomic form for the sake of
efficiency. We show in this section an efficient way to unify two constraint systems
C, D in atomic form into a new constraint system E in atomic form that is equiv-
alent to the conjunction of C and D. This is done in two steps: the first, a common
refinement step in which atoms from C and D are paired; and a minimization step
in which inaccessible atoms are annihilated and equivalent atoms coalesced.

5.1. Common Refinement

Let C=(UC, XC, EC, PC) and D=(U D, XD, E D, PD) be two systems of set
constraints in atomic form with disjoint sets of atoms. We unify C and D by
forming their coarsest common refinement. The resulting system will be in atomic
form and will be equivalent to the conjunction of C and D.

15SET CONSTRAINTS AND LOGIC PROGRAMMING
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For u # U C and v # U D, let uv denote a new variable which is formally the
ordered pair (u, v) but represents the conjunction u & v. Define the system E=(U E,
X E, E E, PE) as follows:

U E= ,
x # X C & X D

((PC(x)_PD(x)) _ ((U C&PC(x))_(U D&PD(x))))

(28)

X E=X C _ X D (29)

E E
f (u1 v1 , ..., un vn)=(E C

f (u1 , ..., un)_E D
f (v1 , ..., vn)) & U E (30)

(PC(x)_PD(x)) & U E, x # X C & X D

PE(x)={(PC(x)_U D) & U E, x # X C&X D (31)

(U C_PD(x)) & U E, x # X D&X C.

This definition can be justified as follows. To obtain (28), we start by taking the
atoms of the coarsest common refinement to be conjunctions of pairs of atoms, one
from C and one from D. Some of these atoms will be immediately annihilated,
however, due to the constraints (21). If x # X C & X D, then the two constraints of
the form (21) involving x, one from C and one from D, imply that

.
u # PC(x)

u= .
v # P D(x)

v,

or equivalently that uv=0 for u # PC(x) and v � PD(x) or for u � PC(x) and
v # PD(x). These uv are annihilated, giving the definition of U E as it appears in (28).

To justify (30), each constraint of the form (20) for C, say

f (u1 , ..., un)� .
u # Ef

C (u� )

u,

and the constraint

.
v # UD

v=1

for D combine using (2) to give constraints

f (u1v1 , ..., unvn)� .

uv # UE

u # E f
C(u� )

uv. (32)

Constraints of the form

f (u1v1 , ..., unvn)� .

uv # UE

v # E f
D (v� )

uv (33)
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are obtained in a symmetric fashion by switching C and D in the definition.
Combining constraints (32) and (33) with like left-hand sides, we obtain the
constraint

f (u1v1 , ..., unvn)� .

uv # UE

u # E f
C (u� )

v # E f
D (v� )

uv.

The justification for (31) is similar.

5.2. Minimization

As we progress down in the search tree, repeated unifications may result in a
proliferation of extraneous atoms. This can be countered by the following process,
which attempts to identify redundancy by (i) deleting inaccessible atoms, and (ii)
identifying equivalent atoms. The technical notions of inaccessible and equivalent
are defined formally below. This construction is analogous to reducing the number
of states in a deterministic or nondeterministic finite state automaton by forming
the quotient modulo a suitable equivalence relation.

Definition 8. Let C, D be systems of set constraints in atomic form over
primary variables X. We call C and D equivalent if for any solution _ of C there
is a solution { of D such that _(x)={(x) for all x # X, and vice versa.

Definition 9. Let C=(U C, X, EC, PC) and D=(U D, X, ED, PD) be systems of
set constraints in atomic form over primary variables X. A homomorphism h: C � D

is a map h: U C � U D such that

PC(x)=h&1(PD(x)) (34)

h(E C
f (u1 , ..., un))=ED

f (h(u1), ..., h(un)). (35)

Lemma 10. Let C=(U C, X, EC, PC) and D=(U D, X, ED, PD) be systems of
set constraints in atomic form over primary variables X, and let h: C � D be a
homomorphism. Then C and D are equivalent.

Proof. Given a run %: T7 � U C for C, define

'=h b % : T7 � U D. (36)

A brief argument involving (22) and (35) shows that ' is a run for D.
Conversely, given a run ': T7 � U D for D, define a run %: T7 � U C for C

satisfying (36) inductively: suppose '(ti )=h(%(ti)), 1�i�n. Then

'( f (t1 , ..., tn )) # ED
f ('(t1), ..., '(tn))=ED

f (h(%(t1)), ..., h(%(tn)))

=h(E C
f (%(t1), ..., %(tn))),

17SET CONSTRAINTS AND LOGIC PROGRAMMING
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so there exists u # E C
f (% ( t1 ) , ..., % ( tn ) ) such that h ( u ) = ' ( f ( t1 , ..., tn ) ). Setting

%( f (t1 , ..., tn ))=u, we have

h(%( f (t1 , ..., tn )))='( f (t1 , ..., tn )).

In either case, by (34) we have

'(t) # PD(x) � h(%(t)) # PD(x) � %(t) # PC(x),

thus

'&1(PD(x))=%&1(PC(x)).

As argued in Theorem 6, the left- and right-hand sides of this equation are
components (23) of set valuations satisfying D and C, respectively. K

Definition 11. Let C=(U, X, E, P) be a system in atomic form. An equivalence
relation # on U is called a congruence if the following two conditions hold:

(i) if u#v and u # P(x), then v # P(x);

(ii) if ui#vi , 1�i�n, then for all u # Ef (u1 , ..., un) there exists v # Ef (v1 , ..., vn)
such that v#u.

Theorem 12. Let C=(U, X, E, P) be a system in atomic form with no inaccessible
atoms in the sense of step (8) of Algorithm 1. The congruences on C and homomorphic
images of C are in one-to-one correspondence up to isomorphism.

Proof. We first show how to construct a quotient system modulo a congruence.
This system will be a homomorphic image of C under the canonical map taking an
atom to its congruence class.

Let # be a congruence on U. Associate a new variable [u] with the #-congruence
class of u. Define

U$=[[u] | u # U]

P$(x)=[[u] | u # P(x)]

E$f ([u1], ..., [un])=[[u] | u # Ef (u1 , ..., un)].

The set E$f ([u1], ..., [un]) is well defined by Definition 11(ii). Moreover, [u] # P$(x) iff
u # P(x); the left-to-right implication depends on Definition 11(i).

Now consider the system C�# of constraints

.
[u] # U$

[u]=1 (37)

[u] & [v]=0, [u]{[v] (38)

f ([u1], ..., [un])� .
[u] # E$f ([u1], ..., [un])

[u] (39)

x= .
[u] # P$(x)

[u], x # X. (40)
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This system is in atomic form, and the canonical map u [ [u] is a homomorphism
C � C�#.

Conversely, any homomorphism h: C � D induces a congruence on C by taking
u#v if h(u)=h(v). This operation is inverse to the quotient construction. K

It follows immediately from Lemma 10 that the system C and its quotient C�#
are equivalent in the sense of Definition 8.

A congruence can be defined on U by setting u#v if for all f # 7, u� , v� , and x,

u # P(x) � v # P(x)

Ef (u� , u, v� )=Ef (u� , v, v� ).

However, this congruence is by no means optimal. The following construction,
analogous to the standard minimization algorithm for finite automata, may give a
better solution in some cases.

The algorithm marks unordered pairs of atoms [u, v] as inequivalent. All pairs
are initially unmarked. If u # P(x) and v � P(x) for some x, mark [u, v]. Now repeat
the following two steps until there are no more marks:

(1) If u� =u1 , ..., un , v� =v1 , ..., vn , and Ef (u� ) contains an element u such that
all pairs [u, v] for v # Ef (v� ) are marked, then nondeterministically choose some
distinct pair [ui , vi ], 1�i�n, and mark it.

(2) If [u, w] is marked but neither [u, v] nor [v, w] is marked, nondeter-
ministically choose either [u, v] or [v, w] and mark it.

When done, unmarked pairs are equivalent.
Any nondeterministic execution of this process results in a congruence, and

all maximally coarse congruences (resulting in minimal homomorphic images) are
achieved by some execution. Moreover, if 7 contains no symbols of arity two or greater,
then step (2) can be dispensed with, since in this case step (1) is deterministic and
automatically results in a transitive relation. In this case the entire process is deter-
ministic and gives the unique maximally coarse congruence, resulting in the unique
minimal homomorphic image. Very fast algorithms are available for this case [8, 25].

6. AN APPLICATION

In program analysis and compiler optimization, one often wishes to determine
information such as whether a given variable can take on a given value at a given
point in the program. Of course this is undecidable in general, but it is often
possible to describe a superset of the values a variable can take on at a given point,
and this approximate information may still be useful in performing optimizations.

Heintze and Jaffar [16] introduced the technique of monadic approximation in
which variable interdependencies are ignored. See [15] for a thorough introduction
to this technique and examples of its application to imperative and logic programs.
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In this section we show how clp(sc) can be used to give a concise characteriza-
tion of the monadic approximation for a simple imperative programming language
consisting of the following constructs:

x :=e simple assignment

if x=y then p else q conditional

while x=y do p while loop

p; q sequential composition

The test x= y in the conditional and while loop can be replaced by x{ y or any
similar test. Programs in this language are called while programs.

This example is included in order to illustrate how a language like clp(sc) might
be applied in program analysis. As a general tool, the language as defined here is
somewhat limited by the fact that it does not include certain constructs used in
program analysis, such as projections and more general conditional expressions.
Extending the language to handle these constructs constitutes a worthwhile topic
for further investigation.

6.1. Collecting Semantics

The collecting semantics associates with each point in the program the set of valua-
tions of program variables that can occur at that point during execution. Following
Heintze [15], we describe here the collecting semantics for while programs.

Let p be a while program and let X be the set of program variables occurring
in p. We associate with each subprogram q two points, one just before and one just
after q. Each such point is labeled with a letter a, b, c, ... . We denote by 9a the set
of valuations �: X � [values] of program variables that ever occur at point a
during execution.

Heintze [15] gives a system of set inclusions whose least solution characterizes
the sets 9a exactly. These are given in Fig. 1. In that figure,

9[x :=e]=[�[x��(e)] | � # 9]

9[x=y]=[� # 9 | �(x)=�( y )]

9[x{y]=[� # 9 | �(x){�( y )]

and �[x�:] denotes the valuation that agrees with � everywhere except possibly x,
and the value of �[x�:] at x is :.

If s is the starting point of the program, then we set 9s=[�0], where �0 is some
initial valuation.

6.2. Monadic Approximation

Heintze [15] shows that the monadic approximation to the collecting semantics
can be computed as the least solution to the same set of equations as in Fig. 1,
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FIG. 1. The collecting semantics of while programs.

except that the meaning of 9a is altered to ignore dependencies among variables.
Whereas 9a is a collection of valuations �: X � [values], we define 9� a to be a set
valuation, i.e., a mapping

9� a : X � 2[values]

that assigns a set of values to each program variable at point a. Under the new
interpretation,

9� [x :=e]=9� [x�9� (e)]

9� [x= y]={9� [x�9� (x) & 9� ( y), y�9� (x) & 9� ( y)]
*x .<,

if 9� (x) & 9� ( y){<
otherwise

*x .<, |9� (x)|=|9� ( y)|=1, 9� (x)=9� ( y)

9� , |9� (x)|=|9� ( y)|=1, 9� (x){9� ( y)

9� [x{y]={9� [ y�9� ( y)&9� (x)], |9� (x)|=1, |9� ( y)|>1

9� [x�9� (x)&9� ( y)], |9� (x)|>1, |9� ( y)|=1

9� , |9� (x)|>1, |9� ( y)|>1.

Here |A| denotes the cardinality of A; 9� [x�A] denotes the map that agrees with
9� everywhere except possibly x, and the value of 9� [x�A] at x is A; and 9� (e) is
the set of values denoted by the expression e under the set-theoretic interpretation
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of the operators, where the variables occurring in e are interpreted by 9� . The
inclusions � of Fig. 1 are interpreted pointwise.

The definitions of 9� [x= y] and 9� [x{ y] may seem rather complicated.
Intuitively, 9� [x= y] is the minimal set valuation approximating the collection of
valuations

[� | �(x)=�( y ) and \z # X �(z) # 9� (z)].

The set 9� [x= y] can be constructed as follows.

(1) Form the maximal set of valuations 9 of which 9� is an approximation.
This is just the direct product

9= `
z # X

9� (z)=[� | \z # X �(z) # 9� (z)].

(2) Intersect 9 with the diagonal set

[� | �(x)=�( y)]

to obtain the set 9[x= y] as defined above. (Any other reasonable test can be
used here.)

(3) Take

9� [x= y]=*x # X .[�(x) | � # 9[x= y]],

the so-called cartesian closure of 9[x= y] [16]. This is the smallest set valuation
approximating 9[x= y].

This construction is illustrated in the following diagram.

The construction of 9� [x{ y] is similar, except that the set [� | �(x){�( y)] is
used in step (2).

One can show that 9� a(x) is a superset of the set [�(x) | � # 9 a] of the values
assigned to x under the old interpretation; i.e., the monadic interpretation is a safe
approximation to the collecting semantics. See Heintze [15] for further details.

Below we give a clp(sc) program to compute the monadic approximation to the
collecting semantics. In this program, the formula

ma(x� , Np\, y� )

22 DEXTER KOZEN



File: DISTL2 269422 . By:CV . Date:16:03:98 . Time:14:24 LOP8M. V8.B. Page 01:01
Codes: 3338 Signs: 1774 . Length: 52 pic 10 pts, 222 mm

asserts that if the set variables x� =x1 , ..., xn are instantiated with sets of values for
the program variables (also denoted x� =x1 , ..., xn), then after executing program p,
the final sets of values assigned to the program variables under the monadic
approximation are given by the values of the set variables y� =y1 , ..., yn . The
expression Np\ denotes the representation of program p in some suitable encoding.

ma(x� , Nxi :=e(x� )\, x1 , ..., xi&1 , e(x� ), xi+1 , ..., xn).

ma(x� , Nif b then p else q\, y� _ z� ) :&

test(x� , Nb\, u� ), ma(u� , Np\, y� ),

test(x� , Ncb\, v� ), ma(v� , Nq\, z� ).

ma(x� , Nwhile b do p\, z� ) :&

u� =x� _ y� ,

test(u� , Nb\, v� ), ma(v� , Np\, y� ),

test(u� , Ncb\, z� ).

ma(x� , Np; q\, z� ) :&ma(x� , Np\, y� ), ma( y� , Nq\, z� ).

test(x� , Nx= y\, 0� ) :&empty(x & y).

test(x� , Nx= y\, ..., x & y, ..., x & y, ...) :&nonempty(x & y).

test(x� , Nx{ y\, 0� ) :&x= y, sng(x), sng( y).

test(x� , Nx{ y\, x� ) :&unequal(x, y), sng(x), sng( y).

test(x� , Nx{ y\, ..., x, ..., y&x, ...) :&sng(x), atleast2( y).

test(x� , Nx{ y\, ..., x& y, ..., y, ...) :&atleast2(x), sng( y).

test(x� , Nx{ y\, x� ) :&atleast2(x), atleast2( y).

If p is a program, the query

?&ma(�0(x1), ..., �0(xn), Np\, y� ).

will instantiate the variables y� with the sets of possible final values of the program
variables under the monadic approximation to the collecting semantics, assuming
that the initial values are given by the valuation �0 .
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