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Abstract. Synchronous Kleene algebra (SKA), an extension of Kleene
algebra (KA), was proposed by Prisacariu as a tool for reasoning about
programs that may execute synchronously, i.e., in lock-step. We provide
a countermodel witnessing that the axioms of SKA are incomplete w.r.t.
its language semantics, by exploiting a lack of interaction between the
synchronous product operator and the Kleene star. We then propose an
alternative set of axioms for SKA, based on Salomaa’s axiomatisation of
regular languages, and show that these provide a sound and complete
characterisation w.r.t. the original language semantics.

1 Introduction

Kleene algebra (KA) is applied in various contexts, such as relational algebra
and automata theory. An important use of KA is as a logic of programs. This is
because the axioms of KA correspond well to properties expected of sequential
program composition, and hence they provide a logic for reasoning about con-
trol flow of sequential programs presented as Kleene algebra expressions. Regular
languages then provide a canonical semantics for programs expressed in Kleene
algebra, due to a tight connection between regular languages and the axioms of
KA: an equation is provable using the Kleene algebra axioms if and only if the
corresponding regular languages coincide [5,19,16].

In [22], Prisacariu proposes an extension of Kleene algebra, called synchronous
Kleene algebra (SKA). The aim was to introduce an algebra useful for studying
not only sequential programs but also synchronous concurrent programs. Here,
synchrony is understood as in Milner’s SCCS [21], i.e., each program executes
a single action instantaneously at each discrete time step. Hence, the synchrony
paradigm assumes that basic actions execute in one unit of time and that at
each time step, all components capable of acting will do so. This model permits
a synchronous product operator, which yields a program that, at each time step,
executes some combination of the actions put forth by the operand programs.

⋆ This work was partially supported by ERC Starting Grant ProFoundNet (679127), a
Leverhulme Prize (PLP–2016–129) and a Marie Curie Fellowship (795119). The first
author conducted part of this work at Centrum Wiskunde & Informatica, Amsterdam.
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This new operator is governed by various expected axioms such as associa-
tivity and commutativity. Another axiom describes the interaction between the
synchronous product and the sequential product, capturing the intended lock-step
behaviour. Crucially, the axioms do not entail certain equations that relate the
Kleene star (used to describe loops) and the synchronous product.

The contributions of this paper are twofold. First, we show that the lack of
connection between the Kleene star and the synchronous product is problematic.
In particular, we exploit this fact to devise a countermodel that violates a seman-
tically valid equation, thus showing that the SKA axioms are incomplete w.r.t.
the language semantics. This invalidates the completeness result in [22].

The second and main contribution of this paper is a sound and complete char-
acterisation of the equational theory of SKA in terms of a generalisation of regular
languages. The key difference with [22] is the shift from least fixpoint axioms in
the style of Kozen [16] to a unique fixpoint axiom in the style of Salomaa [24]. In
the completeness proof, we give a reduction to the completeness result of Salomaa
via a normal form for SKA expressions. As a by-product, we get a proof of the
correctness of the partial derivatives for SKA provided in [7].

This paper is organised as follows. In Section 2 we discuss the necessary pre-
liminaries. In Section 3 we discuss SKA as presented in [22]. Next, in Section 4, we
demonstrate why SKA is incomplete, and in Section 5 go on to provide a new set
of axioms, which we call SF1. The latter section also includes basic results about
the partial derivatives for SKA from [7]. In Section 6 we provide an algebraic
characterisation of SF1-terms; this characterisation is used in Section 7, where we
prove completeness of SF1 w.r.t. to its language model. In Section 8 we consider
related work and conclude by discussing directions for future work in Section 9.
For the sake of readability, some of the proofs appear in the appendix.

2 Preliminaries

Throughout this paper, we write 2 for the two-element set {0, 1}.

Languages Throughout the paper we fix a finite alphabet Σ. A word formed over
Σ is a finite sequence of symbols from Σ. The empty word is denoted by ε. We
write Σ∗ for the set of all words over Σ. Concatenation of words u, v ∈ Σ∗ is
denoted by uv ∈ Σ∗. A language is a set of words. For K,L ⊆ Σ∗, we define

K · L = {uv : u ∈ K, v ∈ L} K + L = K ∪ L K∗ =
⋃

n∈N
Kn,

where K0 = {ε} and Kn+1 = K ·Kn.

Kleene Algebra We define a Kleene algebra [16] as a tuple (A,+, ·,∗ , 0, 1) where
A is a set, ∗ is a unary operator, + and · are binary operators and 0 and 1 are
constants. Moreover, for all e, f, g ∈ A the following axioms are satisfied:

e+ (f + g) = (e + f) + g e+ f = f + e e+ 0 = e e+ e = e

e · 1 = e = 1 · e e · 0 = 0 = 0 · e e · (f · g) = (e · f) · g

e∗ = 1 + e · e∗ = 1 + e∗ · e (e + f) · g = e · g + f · g e · (f + g) = e · f + e · g
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Additionally, we write e ≤ f as a shorthand for e + f = f , and require that the
least fixpoint axioms [16] hold, which stipulate that for e, f, g ∈ A we have

e+ f · g ≤ g =⇒ f∗ · e ≤ g e+ f · g ≤ f =⇒ e · g∗ ≤ f

The set of regular expressions, denoted TKA, is described by the grammar:

TKA ∋ e, f ::= 0 | 1 | a ∈ Σ | e+ f | e · f | e∗

Regular expressions can be interpreted in terms of languages. This is done by
defining J−KKA : TKA → P(Σ∗) inductively, as follows.

J0KKA = ∅ JaKKA = {a} Je · fKKA = JeKKA · JfKKA

J1KKA = {ε} Je+ fKKA = JeKKA + JfKKA Je∗KKA = JeK∗
KA

A language L is called regular if and only if L = JeKKA for some e ∈ TKA.
We write≡KA for the smallest congruence on TKA induced by the Kleene algebra

axioms — e.g., for all e ∈ TKA, we have 1+e ·e∗ ≡KA e
∗. Intuitively, e ≡KA f means

that the regular expressions e and f can be proved equivalent according to the
axioms of Kleene algebra. A pivotal result in the study of Kleene algebras tells us
that J−KKA characterises ≡KA, in the following sense:

Theorem 2.1 (Soundness and Completeness of KA [16]). For all e, f ∈
TKA, we have that e ≡KA f if and only if JeKKA = JfKKA.

Remark 2.2. The above can be generalised, as follows. Let K = (A,+, ·,∗ , 0, 1) be
a KA, and let σ : Σ → A. Then for all e, f ∈ TKA such that e ≡KA f , interpreting e

and f according to σ in K yields the same result. For instance, since (a∗)
∗ ≡KA a

∗,
we know that for any element e of any KA K, we have that (e∗)

∗
= e.

Linear Systems Let Q be a finite set. A Q-vector is a function x : Q → TKA. A
Q-matrix is a function M : Q×Q → TKA. Let x and y be Q-vectors. Addition is
defined pointwise, setting (x+ y)(q) = x(q) + y(q). Multiplication by a Q-matrix
M is given by

(M · x)(q) =
∑

e∈Q

M(q, e) · x(e)

When x(q) ≡KA y(q) for all q ∈ Q, we write x ≡KA y.

Definition 2.3. A Q-linear system is a pair (M,x) with M a Q-matrix and x a
Q-vector. A solution to (M,x) in KA is a Q-vector y such that M · y + x ≡KA y.

Non-deterministic finite automata A non-deterministic automaton (NDA) over
an alphabet Σ is a triple (X, o, d) where o : X → 2 is called the termination
function and d : X × Σ → X called the continuation function. If X is finite,
(X, o, d) is referred to as a non-deterministic finite automaton (NFA).

The semantics of an NDA (X, o, d) can be characterised recursively as the
unique map ℓ : X → P(Σ∗) such that

ℓ(x) = {ε : o(x) = 1} ∪
⋃

x′∈d(x,a)

{a} · ℓ(x′) (1)

This coincides with the standard definition of language acceptance.
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3 Synchronous Kleene Algebra

Synchronous Kleene algebra extends Kleene algebra with an additional operator
denoted ×, which we refer to as the synchronous product [22].

Definition 3.1 (Synchronous Kleene Algebra). A synchronous KA (SKA)
is a tuple (A,S,+, ·,∗ ,×, 0, 1) such that (A,+, ·,∗ , 0, 1) is a Kleene algebra and ×
is a binary operator on A, with S ⊆ A closed under × and (S,×) a semilattice.
Furthermore, the following hold for all e, f, g ∈ A and α, β ∈ S:

e× (f + g) = e× f + e× g e× (f × g) = (e× f)× g e× 0 = 0

(α · e)× (β · f) = (α× β) · (e× f) e× f = f × e e× 1 = e

Note that 0 and 1 need not be elements of S. The semilattice terms, denoted TSL,
are given by the following grammar.

TSL ∋ e, f ::= a ∈ Σ | e× f

The synchronous regular terms, denoted TSKA, are given by the grammar:

TSKA ∋ e, f ::= 0 | 1 | a ∈ TSL | e+ f | e · f | e× f | e∗

Thus we have TSL ⊆ TSKA. We then define ≡SKA as the smallest congruence on
TSKA satisfying the axioms of SKA . Here, TSL plays the role of the semilattice; for
instance, for a ∈ TSL we have that a× a ≡SKA a.

Remark 3.2. In [22], × is declared to be idempotent on the generators of the
semilattice, whereas in our definition it holds for semilattice elements in general.
This does not change anything, as the axiom a × a = a for generators together
with commutativity and associativity results in idempotence on the semilattice.
We present SKA as in Definition 3.1 to prevent a meta-definition of a third sort
(namely the semilattice generated by Σ) present in the signature of the algebra.
We have also left out the second distributivity and unit axioms that follow imme-
diately from the ones presented and commutativity.

3.1 A Language Model for SKA

Similar to Kleene algebra, there is a language model for SKA [22].
Words over P(Σ) \ {∅} = Pn(Σ) are called synchronous strings, and sets

of synchronous strings are called synchronous languages. The standard language
operations (sum, concatenation, Kleene closure) are also defined on synchronous
languages. The synchronous product of synchronous languages K,L is given by:

K × L = {u× v : u ∈ K, v ∈ L}

where we define × inductively for u, v ∈ (Pn(Σ))
∗
and x, y ∈ Pn(Σ), as follows:

u× ε = u = ε× u and (x · u)× (y · v) = (x ∪ y) · (u× v)

To define the language semantics for all elements in TSKA, we first give an
interpretation of elements in TSL in terms of non-empty finite subsets of Σ.



Completeness and Incompleteness of Synchronous Kleene Algebra 5

Definition 3.3. For a ∈ Σ and e, f ∈ TSL, define J−KSL : TSL → Pn(Σ) by

JaKSL = {a} Je× fKSL = JeKSL ∪ JfKSL

Denote the smallest congruence on TSL with respect to idempotence, asso-
ciativity and commutativity of × with ≡SL. It is not hard to show that J−KSL

characterises ≡SL, in the following sense.

Lemma 3.4 (Soundness and Completeness of SL). For all e, f ∈ TSL, we
have JeKSL = JfKSL if and only if e ≡SL f .

The semantics of synchronous regular terms is given in terms of a mapping to
synchronous languages: J−KSKA : TSKA → P((Pn(Σ))

∗
). We have:

J0KSKA = ∅ J1KSKA = {ε} JaKSKA = {JaKSL} ∀a ∈ TSL Je∗KSKA = JeK∗SKA

Je · fKSKA = JeKSKA · JfKSKA Je+ fKSKA = JeKSKA + JfKSKA Je× fKSKA = JeKSKA × JfKSKA

A synchronous language L is called regular when L = JeKSKA for some e ∈ TSKA.
Let S = {{x} : x ∈ Pn(Σ)}, that is to say, S is the set of synchronous lan-

guages consisting of a single word, whose single letter is in turn a subset of Σ.
Furthermore, let LΣ denote the set of synchronous languages overΣ. It is straight-
forward to prove that LΣ together with S is closed under the SKA operations
and satisfies the SKA axioms [22]; more precisely, we have:

Lemma 3.5. The structure (LΣ , S,+, ·,∗ ,×, ∅, {ε}) is an SKA, that is, synchronous
languages over Σ form an SKA.

As a consequence of Lemma 3.5, we obtain soundness of the SKA axioms with
respect to the language model based on synchronous regular languages:

Lemma 3.6 (Soundness of SKA). For all e, f ∈ TSKA, we have that e ≡SKA f

implies JeKSKA = JfKSKA.

Remark 3.7. The above generalises almost analogously to Remark 2.2. Let M
be an SKA with semilattice S, and let σ : Σ → S be a function. Then for all
e, f ∈ TSKA such that e ≡SKA f , if we interpret e in M according to σ, then we
should get the same result as when we interpret f in M according to σ.

In other words, when e ≡SKA f holds, it follows that e = f is a valid equation
in every SKA, provided that the symbols from Σ are interpreted as elements of
the semilattice. It is not hard to show that this claim does not hold when symbols
from Σ can be interpreted as elements of the carrier at large.

4 Incompleteness of SKA

We now prove incompleteness of the SKA axioms as presented in [22]. Fix alphabet
A = {a}. First, note that the language model of SKA has the following property.

Lemma 4.1. For α ∈ TSL, we have Jα∗ × α∗KSKA = Jα∗KSKA.

If ≡SKA were complete w.r.t. J−KSKA, then the above implies that a∗×a∗ ≡SKA a
∗

holds. In this section, we present a countermodel where all the axioms of SKA are
true, but α∗×α∗ = α∗ does not hold for any α ∈ S. This shows that a∗×a∗ 6≡SKA a

∗;
consequently, ≡SKA cannot be complete w.r.t. J−KSKA.
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Countermodel for SKA

We define our countermodel as follows. For the semilattice, let S = {{{s}}}, the
set containing the synchronous language {{s}}. We denote the set of all syn-
chronous languages over alphabet {s} with Ls; the carrier of our model is formed
by Ls ∪{†}, where † is a symbol not found in Ls. The symbol † exists only in the
model, and not in the algebraic theory. It remains to define the SKA operators
on this carrier, which we do as follows.

Definition 4.2. An element of Ls∪{†} is said to be infinite when it is an infinite
language. For K,L ∈ Ls ∪ {†}, define the SKA operators as follows:

K + L =

{

†

K ∪ L

K = † ∨ L = †

otherwise

K · L =











∅

†

{u · v : u ∈ K, v ∈ L}

K = ∅ ∨ L = ∅

K = † ∨ L = †

otherwise

K × L =











∅

†

{u× v : u ∈ K, v ∈ L}

K = ∅ ∨ L = ∅

K = † ∨ L = † ∨K,L infinite

otherwise

K∗ =

{

†
⋃

n∈N
Kn

K = †

otherwise

where u × v for u ∈ K and v ∈ L and Kn is as defined in Section 3. Here, the
cases are given in order of priority — e.g., if K = ∅ and L = †, then K · L = ∅.

The intuition behind this model is that SKA has no axioms that relate to the
synchronous execution of starred expressions, such as in α∗ × α∗, nor can such a
relation be derived from the axioms, meaning that a model has some leeway in
defining the outcome in such cases. Since the language of a starred expression is
generally infinite, we choose × such that it diverges to the extra element † when
given infinite languages as input; for the rest of the operators, the behaviour on
† is chosen to comply with the axioms.

First, we verify that our operators satisfy the SKA axioms.

Lemma 4.3. M = (Ls ∪ {†}, {{{s}}},+, ·,∗ ,×, ∅, {ε}) with the operators as de-
fined in Definition 4.2 forms an SKA.

Proof. For the sake of brevity, we validate one of the least fixpoint axioms and
the synchrony axiom; the other axioms are treated in the appendix.

Let K,L, J ∈ Ls∪{†}. We verify that K+L ·J ≤ J =⇒ L∗ ·K ≤ J . Assume
that K + L · J ≤ J . If J = †, then the result follows by definition of ≤ and our
choice of +. Otherwise, if J ∈ Ls, we distinguish two cases. If L = †, then J must
be ∅ (otherwise J = †); hence K = ∅, and the claim holds. Lastly, if L ∈ Ls, then
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K ∈ Ls. In this case, all of the operands are languages, and thus the proof goes
through as it does for KA.

For the synchrony axiom, we need only check

(A ·K)× (A · L) = (A×A) · (K × L)

for A = {{s}} as that is the only element in S. Let K,L ∈ Ls ∪ {†}. If either K
or L is ∅, both sides of the equation reduce to ∅. Otherwise, if K or L is †, then
both sides of the equation reduce to †. If K and L are both infinite then A ·K and
A ·L are infinite and the claim follows. In all the remaining cases where K and L

are elements of Ls and at most one of them is infinite, the proof goes through as
it does for synchronous regular languages (Lemma 3.6). ⊓⊔

This leads us to the following theorem:

Theorem 4.4. The axioms of SKA presented in Definition 3.1 are incomplete.
That is, there exist e, f ∈ TSKA such that JeKSKA = JfKSKA but e 6≡SKA f .

Proof. Take a ∈ A. We know from Lemma 4.1 that Ja∗ × a∗KSKA = Ja∗KSKA. Now
suppose a∗×a∗ ≡SKA a

∗. As our countermodel is an SKA that means in particular
that {{s}}∗ × {{s}}∗ = {{s}}∗ should hold (c.f. Remark 3.7). However, in this
model we can calculate that {{s}}∗ × {{s}}∗ = † 6= {{s}}∗. Hence, we have a
contradiction. Thus a∗ × a∗ 6≡SKA a

∗, rendering SKA incomplete. ⊓⊔

5 A new axiomatisation

We now create an alternative algebraic formalism, which we call SF1, and prove
that its axioms are sound and complete w.r.t the model of synchronous regular
languages. Whereas the definition of SKA relies on Kleene algebras (with least
fixpoint axioms) as presented by Kozen [16], the definition of SF1 builds on F1-
algebras (with a unique fixpoint axiom) as presented by Salomaa [24]. The axioms
of Salomaa are strictly stronger than Kozen’s [?], and we will see that the unique
fixpoint axiom allows us to derive a connection between the synchronous product
and the Kleene star, even though this connection is not represented in an axiom
directly (see Remark 5.8).

Definition 5.1. An F1-algebra [24] is a tuple (A,+, ·,∗ , 0, 1, H) where A is a set,
∗ is a unary operator, + and · are binary operators and 0 and 1 are constants,
and such that for all e, f, g ∈ A the following axioms are satisfied:

e+ (f + g) = (e + f) + g e+ f = f + e e+ 0 = e e+ e = e

e · 1 = e = 1 · e e · 0 = 0 = 0 · e e · (f · g) = (e · f) · g

e∗ = 1 + e · e∗ = 1 + e∗ · e (e + f) · g = e · g + f · g e · (f + g) = e · f + e · g

Additionally, the loop tightening and unique fixpoint axiom hold:

(e+ 1)∗ = e∗ H(f) = 0 ∧ e+ f · g = g =⇒ f∗ · e = g
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Lastly, we have the following axioms for H:

H(0) = 0 H(e+ f) = H(e) +H(f) H(e∗) = (H(e))∗

H(1) = 1 H(e · f) = H(e) ·H(f)

In [24], an e ∈ A with H(e) = 1 is said to have the empty word property, which
will be reflected in the semantic interpretation of H(e) stated below.

The set of F1-expressions, denoted TF1
, is described by:

TF1
∋ e, f ::= 0 | 1 | a ∈ Σ | e+ f | e · f | e∗ | H(e)

We can interpret F1-expressions in terms of languages through J−KF1
: TF1

→
P(Σ∗), defined analogously to J−KKA, where furthermore for e ∈ TF1

we have

JH(e)KF1
= JeKF1

∩ {ε}

We write ≡F1
for the smallest congruence on TF1

induced by the F1-axioms.
Additionally, we require that for a ∈ Σ, we have H(a) ≡F1

0. A characterisation
similar to Theorem 2.1 can then be established as follows4:

Theorem 5.2 (Soundness and Completeness of F1 [24]). For all e, f ∈ TF1
,

we have that e ≡F1
f if and only if JeKF1

= JfKF1
.

Remark 5.3. Kozen [16] noted that the above does not generalise along the same
lines as in Remark 2.2. In particular, the axiom H(a) ≡SKA 0 is not stable under
substitution; for instance, if we interpret H(a) according to the valuation a 7→ {ǫ}
in the F1-algebra of languages, then we obtain {ǫ}, whereas 0 is interpreted as ∅.

Definition 5.4. A synchronous F1-algebra (SF1-algebra for short) is a tuple
(A,S,+, ·,∗ , 0, 1, H), such that (A,+, ·,∗ , 0, 1, H) is an F1-algebra and × is a bi-
nary operator on A, with S ⊆ A closed under × and (S,×) a semilattice. Further-
more, the following hold for all e, f, g ∈ A and α, β ∈ S:

e× (f + g) = e× f + e× g e× (f × g) = (e× f)× g e× 0 = 0

(α · e)× (β · f) = (α× β) · (e× f) e× f = f × e e× 1 = e

Moreover, H is compatible with × as well, i.e., for e, f ∈ A we have that H(e ×
f) = H(e)×H(f). Lastly, for α ∈ S we require that H(α) = 0.

Remark 5.5. The countermodel from Section 4 cannot be extended to a model
of SF1. To see this, note that we have H({{s}}) = 0 and ∅ + {{s}} · † = †, but
{{s}}∗ · ∅ 6= † — contradicting the unique fixpoint axiom.

4 Unlike [24], we include H in the syntax; one can prove that for any e ∈ TF1
it holds

that H(e) ≡ 0 or H(e) ≡ 1, and hence any occurence of H can be removed from e.
This is what allows us to apply the completeness result from op. cit. here.
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The set of SF1-expressions over Σ, denoted TSF1
, is described by:

TSF1
∋ e, f ::= 0 | 1 | a ∈ TSL | e+ f | e · f | e× f | e∗ | H(e)

We interpret TSF1
in terms of languages via J−KSF1

: TSF1
→ LΣ , defined analo-

gously to J−KSKA, where furthermore for e ∈ TSF1
we have

JH(e)KSF1
= JeKSF1

∩ {ε}

Note that when e ∈ TSKA, then e ∈ TSF1
and JeKSKA = JeKSF1

.
Define ≡SF1

as the smallest congruence on TSF1
induced by the axioms of SF1,

where TSL fulfills the role of the semilattice — e.g., if a ∈ TSL, then a× a ≡SF1
a.

This axiomatisation is sound with respect to the language model.5

Lemma 5.6. Let e, f ∈ TSF1
. If e ≡SF1

f then JeKSF1
= JfKSF1

.

Remark 5.7. The caveat from Remark 5.3 can be transposed to this setting. How-
ever, the condition that for α ∈ S we have that H(α) = 0 allows one to strengthen
the above along the same lines as Remark 3.7, that is, if e ≡SF1

f , then interpret-
ing e and f in some SKA according to some valuation of Σ in terms of semilattice
elements will produce the same outcome.

Remark 5.8. To demonstrate the use of the new axioms, we give an algebraic
proof of α∗ × α∗ ≡SF1

α∗ for α ∈ TSL:

α∗ × α∗ ≡SF1
(1 + α · α∗)× (1 + α · α∗) ≡SF1

1 + α · α∗ + (α · α∗)× (α · α∗)

≡SF1
1 + α · α∗ + (α× α) · (α∗ × α∗) ≡SF1

α∗ + α · (α∗ × α∗)

SinceH(α) = 0, we can apply the unique fixpoint axiom to find α∗ ·α∗ ≡SF1
α∗×α∗.

In SF1, it is not hard to show that α∗ · α∗ ≡F1
α∗; hence, we find α∗ ×α∗ ≡SF1

α∗.

Remark 5.9. Adding α∗×α∗ = α∗ for α ∈ TSL as an axiom to the old axiomatisa-
tion of SKA would not have been sufficient; one can easily find another semantical
truth that does not hold in our countermodel, such as J(α · β)∗ × (α · β)∗KSKA =
J(α · β)∗KSKA. Adding e∗ × e∗ = e∗ as an axiom is also not an option, as this is not
sound; for instance, take e = a+b for a, b ∈ Σ. In order to keep the axiomatisation
finitary, a unique fixpoint axiom provided an outcome.

5.1 Partial Derivatives

In this section we develop the theory of SKA and set up the necessary machinery
for Section 6 and the completeness proof in Section 7. We start by presenting
partial derivatives, which provide a termination and continuation map on TSF1

.
These derivatives allow us to turn the set of synchronous regular terms into a non-
deterministic automaton structure, such that the language accepted by e ∈ TSF1

5 Note that for the synchronous language model we know the least fixpoint axioms
are sound as well (Lemma 3.6). However, there might be other SF1-models where the
least fixpoint axioms are not valid.



10 J. Wagemaker, M. Bonsangue, T. Kappé, J. Rot, A. Silva

as a state in this automaton is the same as the semantics of e. Furthermore,
partial derivatives turn out to provide a way to algebraically characterise a term
by means of acceptance and reachable terms, which is useful in the completeness
proof of SF1.

The termination and continuation map for SF1-expressions presented below
are a trivial extension of the ones from [7]. Intuitively, the termination map is 1 if
an expression can immediately terminate, and 0 otherwise; the continuation map
of a term w.r.t. A gives us the set of terms reachable with an A-step.

Definition 5.10 (Termination map). For a ∈ Σ, we define o : TSF1
→ 2

inductively, as follows:

o(0) = 0 o(e∗) = 1 o(e+ f) = max(o(e), o(f)) o(e× f) = min(o(e), o(f))

o(1) = 1 o(a) = 0 o(e · f) = min(o(e), o(f)) o(H(e)) = o(e)

Definition 5.11 (Continuation map). For a ∈ Σ, we inductively define δ :
TSF1

× Pn(Σ) → P(TSF1
) as follows:

δ(0, A) = δ(1, A) = ∅ δ(e × f,A) = ∆(e, f, A) ∪∆(f, e, A)

δ(H(e), A) = ∅ ∪ {e′ × f ′ : e′ ∈ δ(e,B1),

δ(a,A) = {1 : A = {a}} f ′ ∈ δ(f,B2), B1 ∪B2 = A}

δ(e∗, A) = {e′ · e∗ : e′ ∈ δ(e, A)} δ(e · f,A) = {e′ · f : e′ ∈ δ(e, A)}

δ(e+ f,A) = δ(e, A) ∪ δ(f,A) ∪∆(f, e, A)

where ∆(e, f, A) is defined to be δ(e, A) when o(f) = 1, and ∅ otherwise.

Definition 5.12 (Syntactic Automaton). We call the NDA (TSF1
, o, δ) the

syntactic automaton of SF1-expressions.

In Section 6 we give a proof of correctness of partial derivatives: for e ∈ TSF1

the semantics of e is equivalent to the language accepted by e as a state in the
syntactic automaton. An analogous property holds for (partial) derivatives in
Kleene algebras [8,1], which makes derivatives a powerful tool for reasoning about
language models and deciding equivalences of terms [6].

In the next two sections, we want to use terms reachable from e, that is to say,
terms that are a result of repeatedly applying the continuation map on e. To this
end, we define the following function:

Definition 5.13. For e, f ∈ TSF1
and a ∈ Σ, we inductively define the reach

function ρ : TSF1
→ P(TSF1

) as follows:

ρ(e + f) = ρ(e) ∪ ρ(f) ρ(0) = ∅

ρ(e · f) = {e′ · f : e′ ∈ ρ(e)} ∪ ρ(f) ρ(1) = {1}

ρ(e∗) = {1} ∪ {e′ · e∗ : e′ ∈ ρ(e)} ρ(a) = {1, a}

ρ(e × f) = {e′ × f ′ : e′ ∈ ρ(e), f ′ ∈ ρ(f)} ∪ ρ(e) ∪ ρ(f) ρ(H(e)) = {1}
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Using a straightforward inductive argument, one can prove that for all e ∈ TSF1
,

ρ(e) is finite. Note that e is not always a member of ρ(e). To see that ρ(e) indeed
contains all terms reachable from e, we record the following.

Lemma 5.14. For all e ∈ TSF1
and A ∈ Pn(Σ), we have δ(e, A) ⊆ ρ(e). Also, if

e′ ∈ ρ(e), then δ(e′, A) ⊆ ρ(e).

5.2 Normal form

In this section we develop a normal form for expressions in TSL, which we will
use in the completeness proof for SF1. As J−KSL is a surjective function it has at
least one right inverse. Let us pick one and denote it by (−)Π . We thus have
(−)Π : Pn(Σ) → TSL such that J−KSL ◦ (−)Π is the identity on Pn(Σ).

The normal form for expressions in TSL is defined as follows:

Definition 5.15 (Normal form). For all e ∈ TSL the normal form of e, denoted
as e, is defined as (JeKSL)

Π . Let TSL = {e : e ∈ TSL}.

Intuitively, an expression in normal form is standardised with respect to idem-
potence, associativity and commutativity. For instance, for a term (a×a)× (c×b)
with a, b, c ∈ Σ, the chosen normal form, dictated by the chosen right inverse,
could be (a×b)×c, and all terms provably equivalent to (a×a)× (c×b) will have
this same normal form. Using Lemma 3.4, we can formalise this in the following
two results:

Lemma 5.16. For all e ∈ TSL, we have that e is provably equivalent to its normal
form: e ≡SL e. Moreover, if two expressions e, f ∈ TSL are provably equivalent, they
have the same normal form: if e ≡SL f , then e = f .

Proof. As (−)Π is a right inverse of J−KSL, we can derive the following:

JeKSL = J(JeKSL)
ΠKSL = JeKSL

From completeness we get e ≡SL e. For the second part of the statement we obtain
via soundness that JeKSL = JfKSL and subsequently that e = f . ⊓⊔

Normalising normalised terms does not change anything.

Lemma 5.17. For all e ∈ TSL we have that e = e.

We extend (−)
Π

from synchronous strings of length one to words and syn-
chronous languages in the obvious way. For a synchronous string aw with a ∈
Pn(Σ) and w ∈ (Pn(Σ))∗, and synchronous language L ∈ LΣ we define:

εΠ = ε (aw)Π = aΠ · (wΠ) LΠ = {wΠ : w ∈ L}

We abuse notation and assume the type of (−)Π is clear from the argument.

Since (−)
Π

is a homomorphism of languages, we have the following.

Lemma 5.18. For synchronous languages L and K, all of the following hold:
(i) (L ∪K)Π = LΠ ∪KΠ , (ii) (L ·K)Π = LΠ ·KΠ , and (iii) (L∗)Π = (LΠ)

∗
.
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6 A Fundamental Theorem for SF1

In this section we shall algebraically capture an expression in terms of its partial
derivatives. This characterisation of an SF1-term will be useful later on in prov-
ing completeness but also provides us with a straightforward method to prove
correctness of the partial derivatives. Following [23,25], we call this characterisa-
tion a fundamental theorem for SF1. Before we state and prove the fundamental
theorem, we prove an intermediary lemma:

Lemma 6.1. For all e, f ∈ TSF1
, we have

∑

e′∈δ(e,A)

(AΠ · e′)×
∑

e′∈δ(f,A)

(AΠ · e′) ≡SF1

∑

e′∈δ(e,A)
e′′∈δ(f,B)

(A ∪B)
Π · (e′ × e′′)

Proof. First note the following derivation for A,B ∈ Pn(Σ), using Lemma 5.16,
the fact that all axioms of ≡SL are included in ≡SF1

, and that (−)Π is a right
inverse of J−KSL:

AΠ ×BΠ ≡SF1
AΠ ×BΠ = (JAΠ ×BΠKSL)

Π

= (JAΠKSL ∪ JBΠKSL)
Π = (A ∪B)Π

Using distributivity, the synchrony axiom and the equation above, we can derive:

∑

e′∈δ(e,A)

(AΠ · e′)×
∑

e′∈δ(f,A)

(AΠ · e′) ≡SF1

∑

e′∈δ(e,A)
e′′∈δ(f,B)

(AΠ · e′)× (BΠ · e′′)

≡SF1

∑

e′∈δ(e,A)
e′′∈δ(f,B)

(AΠ ×BΠ) · (e′ × e′′) ≡SF1

∑

e′∈δ(e,A)
e′′∈δ(f,B)

(A ∪B)Π · (e′ × e′′)

The synchrony axiom can be applied because AΠ , BΠ ∈ TSL. ⊓⊔

Theorem 6.2 (Fundamental Theorem). For all e ∈ TSF1
, we have

e ≡SF1
o(e) +

∑

e′∈δ(e,A)

AΠ · e′.

Proof. This proof is mostly analogous to the proof of the fundamental theorem
for regular expressions, such as the one that can be found in [25].

We proceed by induction on e. In the base, we have three cases to consider:
e ∈ {0, 1} or e = a for a ∈ Σ. For e ∈ {0, 1}, the result follows immediately. For
e = a, the only non-empty derivative is δ(a, {a}) and the result follows:

o(a) +
∑

e′∈δ(a,A)

AΠ · e′ ≡SF1
o(a) + a · 1 ≡SF1

a ≡SF1
a
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In the inductive step, we treat only the case for synchronous composition; the
others can be found in the appendix. If e = e0 × e1, derive as follows:

e0 × e1

≡SF1

(

o(e0) +
∑

e′∈δ(e0,A)

AΠ · e′
)

×
(

o(e1) +
∑

e′∈δ(e1,A)

AΠ · e′
)

(Ind. hyp.)

≡SF1
o(e0)× o(e1) +

∑

e′∈δ(e0,A)

(AΠ · e′)× o(e1) + o(e0)×
∑

e′∈δ(e1,A)

AΠ · e′

+
∑

e′∈δ(e0,A)

(AΠ · e′)×
∑

e′∈δ(e1,A)

(AΠ · e′) (Distributivity)

≡SF1
o(e0 × e1) +

∑

e′∈δ(e0,A)

(AΠ · e′)× o(e1) + o(e0)×
∑

e′∈δ(e1,A)

AΠ · e′

+
∑

e′∈δ(e0,A)
e′′∈δ(e1,B)

(A ∪B)
Π · (e′ × e′′) (Def. o, Lemma 6.1)

≡SF1
o(e0 × e1) +

∑

e′∈∆(e0,e1,A)

AΠ · e′ +
∑

e′∈∆(e1,e0,A)

AΠ · e′ +
∑

e′∈{e′
0
×e′

1
:e′

0
∈δ(e0,A),

e′
1
∈δ(e1,B),C=A∪B}

CΠ · e′

≡SF1
o(e0 × e1) +

∑

e′∈δ(e0×e1,A)

AΠ · e′ (Def. δ) ⊓⊔

Correctness of partial derivatives for SF1

We now relate the partial derivatives for SF1 to their semantics. Let ℓ : TSF1
→ LΣ

be the semantics of the syntactic automaton (TSF1
, o, δ) (Definition 5.12), uniquely

defined by Equation 1:

ℓ(e) = {ε : o(e) = 1} ∪
⋃

e′∈δ(e,A)

{A} · ℓ(e′) (2)

To prove correctness of derivatives for SF1, we prove that the language seman-
tics of the syntactic automaton and the SF1-expression coincide:

Theorem 6.3 (Soundness of derivatives). For all e ∈ TSF1
we have:

ℓ(e) = JeKSF1

Proof. The claim follows almost immediately from the fundamental theorem. From
Lemma 3.6 and Theorem 6.2, we obtain

JeKSF1
= {ε : o(e) = 1} ∪

⋃

e′∈δ(e,A)

{A} · Je′KSF1

Note that JAΠKSF1
= {JAΠKSL} = {A} by definition of the SF1 semantics of a

term in TSL and the fact that (−)Π is a right inverse. Because ℓ is the only
function satisfying Equation 2, we obtain the desired equality between JeKSF1

and
the language ℓ(e) accepted by e as a state of the automaton (TSF1

, o, δ). ⊓⊔
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7 Completeness of SF1

In this section we prove completeness of the SF1-axioms with respect to the syn-
chronous language model: we prove that for e, f ∈ TSF1

, if JeKSF1
= JfKSF1

, then
e ≡SF1

f . We first prove completeness of SF1 for a subset of SF1-expressions, re-
lying on the completeness result of F1 (Lemma 7.3). Then we demonstrate that
for every SF1-expression we can find an equivalent SF1-expression in this specific
subset (Theorem 7.6). This subset is formed as follows.

Definition 7.1. The set of SF1-expressions in normal form, TNSF, is described
by the grammar

TNSF ∋ e, f ::= 0 | 1 | a ∈ TSL | e+ f | e · f | e∗

where TSL is as defined in Definition 5.15.

From this description it is immediate that an SF1-term e ∈ TNSF is formed from
terms of TSL connected via the regular F1-algebra operators. Hence, F1-expressions
formed over the alphabet TSL are the same set of terms as TNSF. We shall use this
observation to prove completeness for TNSF with respect to the language model
by leveraging completeness of F1 .

We use the function (−)Π to give a translation between the SF1 semantics of
a term in TNSF and the F1 semantics of that same term:

Lemma 7.2. For all e ∈ TNSF, we have (JeKSF1
)
Π

= JeKF1
.

Proof. We proceed by induction on the construction of e. In the base, there are
three cases to consider. If e = 0, then JeKSF1

= ∅ = JeKF1
, and we are done. If

e = 1, then (JeKSF1
)Π = ({ε})Π = {ε} = J1KF1

, and the claim follows. If e = a for
a ∈ TSL, we use Lemma 5.17 to obtain a = a. As a ∈ TSL ⊆ TSL, we know that
(JaKSF1

)
Π

= ({JaKSL})
Π

= {(JaKSL)
Π} = {a} = {a} = JaKF1

, and the claim follows.

For the inductive step, first consider e = H(e0). (JH(e0)KSF1
)Π = {ε} if ε ∈

Je0KSF1
and ∅ otherwise. We also have JH(e0)KF1

= {ε} if ε ∈ Je0KF1
and ∅ otherwise.

The induction hypothesis states that (Je0KSF1
)
Π

= Je0KF1
, from which we obtain

that ε ∈ Je0KSF1
⇔ ε ∈ Je0KF1

. Hence we can conclude that (JH(e0)KSF1
)Π =

JH(e0)KF1
. All other inductive cases follow immediately from Lemma 5.18. The

details can be found in the appendix. ⊓⊔

We are now ready to prove completeness of SF1 for terms in normal form.

Lemma 7.3. Let e, f ∈ TNSF. If JeKSF1
= JfKSF1

, then e ≡SF1
f .

Proof. By the premise, we have that (JeKSF1
)Π = (JfKSF1

)Π . From Lemma 7.2 we

get (JeKSF1
)
Π

= JeKF1
and (JfKSF1

)
Π

= JfKF1
, which results in JeKF1

= JfKF1
. From

Theorem 5.2 we know that this entails that e ≡F1
f . As SF1 contains all the

axioms of F1, we may then conclude that e ≡SF1
f and the claim follows. ⊓⊔
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In order to prove completeness with respect to the language model for all
e ∈ TSF1

, we prove that for every e ∈ TSF1
there exists a term ê ∈ TNSF in normal

form such that e ≡SF1
ê. To see this is indeed enough to establish completeness of

SF1, imagine we have such a procedure to transform e into ê in normal form. We
can then conclude that JeKSF1

= JfKSF1
implies JêKSF1

= Jf̂KSF1
, which by Lemma 7.3

implies ê ≡SF1
f̂ , and consequently that e ≡SF1

f .
To obtain ê, we will make use of the “unfolding” of an SF1-expression e in

terms of partial derivatives, given by the fundamental theorem, which will give
rise to a linear system. We will then show that this linear system has a unique
solution that has the properties we require from ê. Since e is also a solution to
this linear system, we can conclude that they are provably equivalent.

Let us start with the following property of linear systems over SF1. A Q-vector
is a function x : Q → TSF1

and a Q-matrix is a function M : Q ×Q → TSF1
. We

call a matrix M guarded if H(M(i, j)) = 0 for all i, j ∈ Q. We say a vector p and
matrix M are in normal form if p(i) ∈ TNSF for all i ∈ Q and M(i, j) ∈ TNSF for
all i, j ∈ Q. The following lemma is a variation of [24, Lemma 2] and the proof is
a direct adaptation of the proof found in [15, Lemma 3.12].

Lemma 7.4. Let (M,p) be a Q-linear system such that M and p are guarded.
We can construct Q-vector x that is the unique (up to SF1-equivalence) solution
to (M,p) in SF1. Moreover, if M and p are in normal form, then so is x.

We now define the linear system associated to an SF1-expression e. This linear
system makes use of the partial derivatives for SF1, and essentially represents an
NFA that acceps the language described by e.

Definition 7.5. Let e ∈ TSF1
, and choose Qe = ρ(e) ∪ {e}, where ρ is the reach

function from Definition 5.13. Define the Qe-vector xe and the Qe-matrix Me by

xe(e
′) = o(e′) Me(e

′, e′′) =
∑

e′′∈δ(e′,A)

AΠ

We can now use Lemma 7.4 to obtain the desired normal form ê:

Theorem 7.6. For all e ∈ TSF1
, there exists an ê ∈ TNSF such that ê ≡SF1

e.

Proof. It is clear from their definition that xe and Me are both in normal form
and that Me is guarded. From Lemma 7.4 we then get that there exists a unique
solution se to (Me, xe), and se is a Qe-vector in normal form. Now consider the
Qe-vector y such that y(q) = q for all q ∈ Qe. Using Lemma 5.14 and Theorem 6.2,
we can derive the following:

xe(q) +Me · y(q) ≡SF1
xe(q) +

∑

q′∈Qe

Me(q, q
′) · y(q′)

≡SF1
o(q) +

∑

q′∈Qe

∑

q′∈δ(q,A)

AΠ · q′

≡SF1
o(q) +

∑

q′∈δ(q,A)

AΠ · q′ ≡SF1
q = y(q)
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This demonstrates that y is also a solution to (Me, xe). As we know from Lemma 7.4
that se is unique, we get that y ≡SF1

se. This means that e = y(e) ≡SF1
se(e). As

se is in normal form we get that se(e) ∈ TNSF. Thus, if we take se(e) = ê, then we
have obtained the desired result. ⊓⊔

Combining Theorem 7.6 and Lemma 7.3 gives the main result of this section:

Theorem 7.7 (Soundness and Completeness). For all e, f ∈ TSF1
, we have

e ≡SF1
f ⇔ JeKSF1

= JfKSF1

As a corollary of Theorem 6.3 and Theorem 7.7 we know that SF1 is decidable
by deciding language equivalence in the syntactic automaton.

8 Related Work

Synchonous cooperation among processes has been extensively studied in the
context of process calculi such as ASP [4] and SCCS [21]. SKA bears a strong
resemblance to SCCS, with the most notable differences being the equivalence
axiomatised (bisimulation vs. language equivalence), and the use of Kleene star
(unbounded finite recursion) instead of fixpoint (possibly infinite recursion). Con-
trary to ASP, but similar to SCCS, SKA cannot express incompatibility of action
synchronisation.

In the context of Kleene algebra based frameworks for concurrent reason-
ing, a synchronous product is just one possible interpretation of concurrency. An
interleaving-based approach with a concurrent operator (a parallel operator de-
noted with ‖) is explored in Concurrent Kleene Algebra [15,20,12,13,15].

We have proved that ≡SF1
is sound and complete with respect to the syn-

chronous language model by making use of the completeness of F1 [24]. The strat-
egy of transforming an expression e to an equivalent expression ê with a particular
property is often used in literature [15,18,20,14]. In particular, we adopted the use
of linear systems as a representation of automata, which was first done by Con-
way [9] and Backhouse [2]. The machinery that we used to solve linear systems
in F1 is based on Salomaa [24] and can also be found in [15] and [17]. The idea
of the syntactic automaton originally comes from Brzozowski, who did this for
regular expressions [8]. He worked with derivatives which turn a Kleene algebra
expression into a deterministic automaton. We worked with partial derivatives
instead, resulting in a non-deterministic finite automaton for each SF1-expression.
Partial derivatives were first proposed by Antimirov [1].

Other related work is that of Hayes et al. [?]. They explore an algebra of
synchronous atomic steps that interprets the synchrony model SKA is based on
(Milner’s SCCS calculus). However, their algebra is not based on a Kleene algebra
— they use concurrent refinement algebra [10] instead. Later, Hayes et al. presented
an abstract algebra for reasoning about concurrent programs with an abstract
synchronisation operator [?], of which their earlier algebra of atomic steps is
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an instance. A key difference seems to be that Hayes et al. use different units
for synchronous and sequential composition. It would be interesting to compare
expressive powers of the two algebras more extensively.

A decision procedure for equivalence between SKA terms is given by Broda
et al. [7]. They defined partial derivatives for SKA that we also used in the proof
of completeness, and used those to construct an NFA that accepts the semantics
of a given SKA expression. Deciding language equivalence of two automata then
leads to a decision procedure for semantic equivalence of SKA expressions.

9 Conclusions and Further Work

We have presented a complete axiomatisation with respect to the model of syn-
chronous regular languages. We have first proved incompleteness of SKA via a
countermodel, exploiting the fact that SKA did not have any axioms relating the
synchronous product to the Kleene star. We then provided a set of axioms based
on the F1-axioms from Salomaa [24] and the axioms governing the synchronous
product familiar from SKA. This was shown to be a sound and complete axioma-
tisation with respect to the synchronous language model.

In the original SKA paper there is a presentation of synchronous Kleene algebra
with tests including a wrongful claim of completeness. An obvious next step would
be to see if we can prove completeness of SF1 with tests. We conjecture SF1

with tests is indeed complete and that this is straightforward to prove via a
reduction to SF1 in a style similar to the completeness proof of KAT [18]. Another
generalisation is to add a unit to the semilattice, making it a bounded semilattice.
This will probably lead to a type of delay operation [21].

Our original motivation to study SKA was to use it as an axiomatisation of
Reo, a modular language of connectors combining synchronous data flow with
an asynchronous one [3]. The semantics of Reo is based on an automata model
very similar to that of SKAT, in which transitions are labelled by sets of ports
(representing a synchronous data flow) and constraints (the tests of SKAT). Inter-
estingly, automata are combined using an operation analogous to the synchronous
product of SKAT expressions. We aim to study the application of SKA or SKAT
to Reo in future work.
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ITA, 24:419–428, 1990.

6. Filippo Bonchi and Damien Pous. Checking NFA equivalence with bisimulations
up to congruence. In Proc. Principles of Programming Languages (POPL), pages
457–468, 2013. doi:10.1145/2429069.2429124.
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A Appendix

Lemma 3.5. The structure (LΣ , S,+, ·,∗ ,×, ∅, {ε}) is an SKA, that is, synchronous
languages over Σ form an SKA.

Proof. The carrier LΣ is obviously closed under the operations of synchronous
Kleene algebra. We need only argue that each of the SKA axioms is valid on
synchronous languages.

The proof for the Kleene algebra axioms follows from the observation that syn-
chronous languages over the alphabet Σ are simply languages over the alphabet
Pn(Σ). Thus we know that the Kleene algebra axioms are satisfied, as languages
over alphabet Pn(Σ) with 1 = {ε} and 0 = ∅ form a Kleene algebra.

For the semilattice axioms, note that S is isomorphic to Pn(Σ) (by sending
a singleton set in S to its sole element), and that the latter forms a semilattice
when equipped with ∪. Since the isomorphism between S and Pn(Σ) respects
these operators, it follows that (S,×) is also a semilattice.

The first SKA axiom that we check is commutativity. We prove that × on
synchronous strings is commutative by induction on the paired length of the
strings. Consider synchronous strings u and v. For the base, where u and v equal
ε, the result is immediate. In the induction step, we take u = xu′ with x ∈ Pn(Σ).
If v = ε we are done immediately. Now for the case v = yv′ with y ∈ Pn(Σ). We
have u × v = (xu′) × (yv′) = (x ∪ y) · (u′ × v′). From the induction hypothesis
we know that u′ × v′ = v′ × u′. Combining this with commutativity of union we
have u × v = (x ∪ y) · (v′ × u′) = v × u. Take synchronous languages K and L.
Now consider w ∈ K ×L. This means that w = u× v for u ∈ K and v ∈ L. From
commutativity of synchronous strings we know that w = u× v = v× u. And thus
we have w ∈ L×K. The other inclusion is analogous.

It is obvious that the axioms K × ∅ = ∅ and K × {ε} = K are satisfied.
For associativity we again first argue that × on synchronous strings is associa-

tive. Take synchronous strings u, v and w. We will show by induction on the paired
length of u, v and w that u×(v×w) = (u×v)×w. If u, v, w = ε the result is immedi-
ate. Now consider u = xu′ for x ∈ Pn(Σ). If v or w equals ε the result is again im-
mediate. Hence we consider the case where v = yv′ and w = zw′ for y, z ∈ Pn(Σ).
From the induction hypothesis we know that u′ × (v′ × w′) = (u′ × v′)× w′. We
can therefore derive

u× (v × w) = (xu′)× (yv′ × zw′) = (xu′)× ((y ∪ z) · (v′ × w′))

= (x ∪ (y ∪ z)) · (u′ × (v′ × w′)) = (x ∪ (y ∪ z)) · ((u′ × v′)× w′)

From associativity of union, we then know that (x ∪ (y ∪ z)) · ((u′ × v′) × w′) =
(u× v)×w. Now consider t ∈ K × (L×J) for K,L and J synchronous languages.
Thus t = u × (v × w) for u ∈ K, v ∈ L and w ∈ J . From associativity of
synchronous strings we know that t = u × (v × w) = (u × v) × w, and thus we
have t ∈ (K × L)× J . The other inclusion is analogous.

For distributivity consider w ∈ K× (L+J) for K,L, J synchronous languages.
This means that w = u × v for u ∈ K and v ∈ L + J . Thus we know v ∈ L or
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v ∈ J . We immediately get that u × v ∈ K × L or u × v ∈ K × J and therefore
that w ∈ K × L+K × J . The other direction is analogous.

For the synchrony axiom we take synchronous languages K,L and A,B ∈ S.
Suppose A = {x} and B = {y} for x, y ∈ Pn(Σ). Take w ∈ (A · K) × (B · L).
This means that w = u × v for u ∈ A · K and v ∈ B · L. Thus we know that
u = xu′ with u′ ∈ K and v = yv′ with v′ ∈ L. From this we conclude w = u×v =
(xu′) × (yv′) = (x ∪ y) · (u′ × v′). As u′ ∈ K and v′ ∈ L and x ∪ y = x × y with
x ∈ A and y ∈ B, we have that w ∈ (A × B) · (K × L). For the other direction,
consider w ∈ (A×B) · (K ×L). This entails w = t ·v for t ∈ A×B and v ∈ K×L.
As A×B = {x∪ y} we have t = x∪ y. And v = u× s for u ∈ K and s ∈ L. Thus
t · v = (x ∪ y) · (u × s) = (xu) × (ys) for u ∈ K, s ∈ L, x ∈ A and y ∈ B. Hence
w ∈ (A ·K)× (B · L). ⊓⊔

Lemma 3.6 (Soundness of SKA). For all e, f ∈ TSKA, we have that e ≡SKA f

implies JeKSKA = JfKSKA.

Proof. This is proved by induction on the construction of ≡SKA. In the base case
we need to check all the axioms generating ≡SKA, which we have already done
for Lemma 3.5. For the inductive step, we need to check the closure rules for
congruence preserve soundness. This is all immediate from the definition of the
semantics of SKA and the induction hypothesis. For instance, if e = e0 + e1, f =
f0+f1, e0 ≡SKA f0 and e1 ≡SKA f1, then JeKSKA = Je0KSKA+Je1KSKA = Jf0KSKA+Jf1KSKA =
JfKSKA, where use that Je0KSKA = Jf0KSKA and Je1KSKA = Jf1KSKA as a consequence of
the induction hypothesis.

Lemma 4.1. For α ∈ TSL, we have Jα∗ × α∗KSKA = Jα∗KSKA.

Proof. For the first inclusion, take w ∈ Ja∗ × a∗KSKA = Ja∗KSKA × Ja∗KSKA. Thus
we have w = u × v for u, v ∈ Ja∗KSKA. Hence u = x1 · · ·xn for xi ∈ JaKSKA and
v = y1 · · · ym for yi ∈ JaKSKA. As JaKSKA = {JaKSL} with JaKSL ∈ Pn(Σ), we know
that xi = JaKSL and yi = JaKSL. Assume that n ≤ m without loss of generality. We
then know that v = u · JaKm−n

SL
, where synchronous string en indicates n copies

of string e concatenated. Unrolling the definition of × on words, we find u× v =
u× (u · JaKk

SL
) = (u× u) · JaKk

SL
= u · JaKk

SL
= v, and hence w = u× v = v ∈ Ja∗KSKA.

For the other inclusion, take w ∈ Ja∗KSKA. As ε ∈ Ja∗KSKA and w × ε = w, we
immediately have w ∈ Ja∗KSKA × Ja∗KSKA. ⊓⊔

Lemma A.1. For K,L ∈ Ls, K a non-empty finite language and L an infinite
language, K × L is an infinite language.

Proof. Suppose that K × L is a finite language. Hence we have an upper bound
on the length of words in K × L. Since the length of the synchronous product of
two words is obviously the maximum of the length of the operands, this means
we also have an upper bound on the length of words in L, and as we have finite
words over a finite alphabet in L this means that L is finite. Hence we get a
contradiction, thus K × L is infinite.

Lemma 4.3. M = (Ls ∪ {†}, {{{s}}},+, ·,∗ ,×, ∅, {ε}) with the operators as de-
fined in Definition 4.2 forms an SKA.
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Proof. In the main text we treated one of the least fixpoint axioms and the syn-
chrony axiom, and here we will treat all the remaining cases. For the sake of
brevity, for each axiom we omit the cases where we can appeal to the proof for
(synchronous) regular languages.

The proof that (S,×) is a semilattice is the same as in Lemma 3.5. Next, we
take a look at the Kleene algebra axioms. If K ∈ Ls, then K + ∅ = ∅ holds by
definition of union of sets. If K = †, we get †+ ∅ = †, and the axiom also holds.

For K ∈ Ls ∪{†}, the axiom K +K = K also easily holds by definition of the
plus operator. Same for K · {ε} = K = K · {ε} and K · ∅ = ∅ = ∅ ·K by definition
of the operator for sequential composition.

It is easy to see the axioms 1 + e · e∗ ≡SKA e∗ and 1 + e∗ · e ≡SKA e∗ hold for
K ∈ Ls. In case K = †, for 1 + e · e∗ ≡SKA e

∗ we have

1 + † · †∗ = 1 + † · † = 1 + † = † = †∗

and a similar derivation for 1 + e∗ · e ≡SKA e
∗.

For the commutativity of + we take K,L ∈ Ls ∪ {†}. If K = † or L = †, we
have K + L = † = L+K.

For associativity of the plus operator we take K,L, J ∈ Ls ∪ {†}. If any of K,
L or J is †, it is easy to see the axiom holds.

For associativity of the sequential composition operator, consider K,L, J ∈
Ls ∪{†}. We first can observe that if one of K, L or J is empty, then the equality
holds trivially. Otherwise, if one ofK, L and J is †, then (K ·L)·J = † = K ·(L·J).

Next, we verify distributivity of concatenation over +. We will show a detailed
proof for left-distributivity only; right-distributivity can be proved similarly. Let
K,L, J ∈ Ls∪{†}. If one of K, L, or J is empty, then the claim holds immediately
(the derivation is slightly different for K versus L or J). Otherwise, if one of K,
L or J is †, then K · (L+ J) = † = K · L+K · J .

For the remaining least fixpoint axiom, let K,L, J ∈ Ls ∪ {†}. Assume that
K + L · J ≤ L. We need to prove that K · J∗ ≤ L. If L = †, then the claim holds
immediately. If L ∈ Ls and J = †, then L must be empty, hence K is empty, and
the claim holds. If L, J ∈ Ls, then also K ∈ Ls and the proof goes through as it
does for KA.

We now get to the axioms for the ×-operator. The commutativity axiom is
obvious from the commutative definition of × (as we already know that × is
commutative on synchronous strings). The axiom K × ∅ = ∅ is also satisfied by
definition. The same holds for the axiom K × {ε} = K as {ε} is finite.

For associativity of the synchronous product, consider K,L, J ∈ Ls ∪ {†}. If
one ofK, L or J is empty, then both sides of the equation evaluate to ∅. Otherwise,
if one of K, J , or L is †, then both sides of the equation evaluate to †. If K, J and
L are all languages, and at most one of them is finite, then either K × L = †, in
which case the left-hand side evaluates to †, or K × L is infinite (by Lemma A.1)
and J = †, in which case the right-hand side evaluates to † again. The right-hand
side can be shown to evaluate to † by a similar argument. In the remaining cases
(at least two out of K, J and L are finite languages and none of them is † or ∅),
the proof of associativity for the language model applies.
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For distributivity of synchronous product over +, let K,L, J ∈ Ls∪{†}. If one
of K, L or J is ∅, then the proof is straightforward. Otherwise, if one of K, L or J
is †, then both sides evaluate to †. If K and L+ J are infinite, then the outcome
is again † on both sides (note that L + J being infinite implies that either L or
J is infinite). In the remaining cases, K, L and J are languages and either K or
L+ J (hence L and J) is finite. In either case the proof for synchronous regular
languages goes through. ⊓⊔

Lemma 5.6. Let e, f ∈ TSF1
. If e ≡SF1

f then JeKSF1
= JfKSF1

.

Proof. We need to verify each of the axioms of SF1. The proof for the axioms of F1

is immediate via the observation that synchronous languages over the alphabet Σ
are simply languages over the alphabet Pn(Σ). Thus we know that the F1-axioms
are satisfied, as languages over alphabet Pn(Σ) with 1 = {ε} and 0 = ∅ form an
F1-algebra. The additional axioms are the same as the ones that were added to
KA for SKA, and we know they are sound from Lemma 3.6. ⊓⊔

Lemma 5.14. For all e ∈ TSF1
and A ∈ Pn(Σ), we have δ(e, A) ⊆ ρ(e). Also, if

e′ ∈ ρ(e), then δ(e′, A) ⊆ ρ(e).

Proof. We prove the first statement by induction on the structure of e. In the
base, if we have e ∈ {0, 1}, the claim holds vacuously. If we have a ∈ Σ, then
ρ(a) = {1, a} and δ(a,A) = {1 : A = {a}}, so the claim follows. For the inductive
step, there are five cases to consider.

– If e = H(e0), then immediately δ(H(e0), A) = ∅ so the claim holds vacuously.
– If e = e0+e1, then by induction we have δ(e0, A) ⊆ ρ(e0) and δ(e1, A) ⊆ ρ(e1).

Hence, we find that δ(e, A) = δ(e0, A) ∪ δ(e1, A) ⊆ ρ(e0) ∪ ρ(e1) = ρ(e).
– If e = e0 · e1, then by induction we have δ(e0, A) ⊆ ρ(e0) and δ(e1, A) ⊆ ρ(e1).

Hence, we can calculate that

δ(e, A) = {e′0 · e1 : e′0 ∈ δ(e0, A)} ∪∆(e1, e0, A)

⊆ {e′0 · e1 : e′0 ∈ ρ(e0)} ∪ ρ(e1) = ρ(e)

– If e = e0×e1, then by induction we have δ(e0, A) ⊆ ρ(e0) and δ(e1, A) ⊆ ρ(e1)
for all A ∈ Pn(Σ). Hence, we can calculate that

δ(e, A) = {e′0 × e′1 : e′0 ∈ δ(e0, B1), e
′
1 ∈ δ(e1, B2), B1 ∪B2 = A}

∪∆(e0, e1, A) ∪∆(e1, e0, A)

⊆ {e′0 × e′1 : e′0 ∈ ρ(e0), e
′
1 ∈ ρ(e1)} ∪ ρ(e0) ∪ ρ(e1) = ρ(e)

– If e = e∗0, then by induction we have δ(e0, A) ⊆ ρ(e0). Hence, we find that

δ(e, A) = {e′0 · e
∗
0 : e′0 ∈ δ(e0, A)} ⊆ {e′0 · e

∗
0 : e′0 ∈ ρ(e0)} ⊆ ρ(e)

For the second statement, we prove that if e′ ∈ ρ(e), then ρ(e′) ⊆ ρ(e). The
result of the first part tells us that δ(e′, A) ⊆ ρ(e′), which together with ρ(e′) ⊆
ρ(e) proves the claim. We proceed by induction on e. In the base, there are two
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cases to consider. First, if e = 0, then the claim holds vacuously. If e = 1, then
the only e′ ∈ ρ(e) is e′ = 1, so the claim holds. If e = a for a ∈ Σ, we have
ρ(e) = {1, a}. It trivially holds that ρ(e′) ⊆ ρ(e) for e′ ∈ ρ(e).

For the inductive step, there are four cases to consider.

– If e = H(e0), then ρ(e) = {1}, and the proof is as in the case where e = 1.
– If e = e0 + e1, assume w.l.o.g. that e′ ∈ ρ(e0). By induction, we derive that

ρ(e′) ⊆ ρ(e0) ⊆ ρ(e)

– If e = e0 · e1 then there are two cases to consider.
• If e′ = e′0 · e1 where e′0 ∈ ρ(e0), then we calculate

ρ(e′) = {e′′0 · e1 : e′′0 ∈ ρ(e′0)} ∪ ρ(e1)

⊆ {e′′0 · e1 : e′′0 ∈ ρ(e0)} ∪ ρ(e1) = ρ(e)

• If e′ ∈ ρ(e1), then by induction we have ρ(e′) ⊆ ρ(e1) ⊆ ρ(e).
– If e = e0 × e1 then there are three cases to consider.

• The first case is e′ = e′0 × e′1 where e′0 ∈ ρ(e0) and e′1 ∈ ρ(e1), we get
ρ(e′0) ⊆ ρ(e0) and ρ(e′1) ⊆ ρ(e1) by induction. We calculate

ρ(e′) = {e′′0 × e′′1 : e′′0 ∈ ρ(e′0), e
′′
1 ∈ ρ(e′1)} ∪ ρ(e′0) ∪ ρ(e′1)

⊆ {e′′0 · e′′1 : e′′0 ∈ ρ(e0), e
′′
1 ∈ ρ(e1)} ∪ ρ(e0) ∪ ρ(e1)

= ρ(e)

• For e′ ∈ ρ(e0), then by induction we have ρ(e′) ⊆ ρ(e0) ⊆ ρ(e).
• For e′ ∈ ρ(e1), the argument is similar to the previous case.

– If e = e∗0, then either e′ = 1 or e′ = e′0 · e
∗
0 for some e′0 ∈ ρ(e0). In the former

case, ρ(e′) = {1} ⊆ ρ(e). In the latter case, we find by induction that

ρ(e′) = {e′′0 · e∗0 : e′′0 ∈ ρ(e′0)} ∪ ρ(e∗0)

⊆ {e′′0 · e∗0 : e′′0 ∈ ρ(e0)} ∪ ρ(e∗0) ⊆ ρ(e∗0) ⊓⊔

Lemma 5.17. For all e ∈ TSL we have that e = e.

Proof. As e ∈ TSL we have that e = e0 for some e0 ∈ TSL. From Lemma 5.16 we
know that e0 ≡SF1

e0. So we get e ≡SF1
e0. Again from Lemma 5.16 we then know

that e = e0 = e. ⊓⊔

Lemma A.2. For x, y ∈ (Pn(Σ))
∗
, we have (x · y)Π = xΠ · yΠ .

Proof. We proceed by induction on the lenth of xy. In the base, we have xy = ε.
Thus x = ε and y = ε. We have εΠ = ε so the result follows immediately. In
the inductive step we consider xy = aw for a ∈ Pn(Σ). We have to consider
two cases. In the first case we have x = ax′. The induction hypothesis gives us
that (x′ · y)Π = x′Π · yΠ . We then have (x · y)Π = (ax′ · y)Π = aΠ · (x′ · y)Π =
aΠ · x′Π · yΠ = xΠ · yΠ . In the second case we have x = ε and y = aw. We then
conclude that (x · y)Π = yΠ = xΠ · yΠ . ⊓⊔



Completeness and Incompleteness of Synchronous Kleene Algebra 25

Lemma 5.18. For synchronous languages L and K, all of the following hold:
(i) (L ∪K)Π = LΠ ∪KΠ , (ii) (L ·K)Π = LΠ ·KΠ , and (iii) (L∗)Π = (LΠ)

∗
.

Proof. (i) First, suppose w ∈ (L ∪K)Π . Thus we have w = vΠ for v ∈ L ∪
K. This gives us v ∈ L or v ∈ K. We assume the former without loss of
generality. Thus we know w = vΠ ∈ LΠ . Hence we know w ∈ LΠ ∪ KΠ .
The other direction can be proved analogously.

(ii) First, suppose w ∈ (L ·K)Π . Thus we have w = vΠ for some v ∈ L ·K. This

gives us v = v1 · v2 for some v1 ∈ L and some v2 ∈ K. By definition of (−)
Π

we know that vΠ1 ∈ LΠ and vΠ2 ∈ KΠ . Thus we have vΠ1 · vΠ2 ∈ LΠ · KΠ .

From Lemma A.2 we know that w = vΠ = (v1 · v2)
Π

= vΠ1 ·vΠ2 , which gives
us the desired result of w ∈ LΠ · KΠ . The other direction can be proved
analogously.

(iii) Take w ∈ (L∗)
Π
. Thus we have w = vΠ for some v ∈ L∗. By definition of

the star of a synchronous language we know that v = u1 · · ·un for ui ∈ L. As
ui ∈ L, we have uΠ

i ∈ LΠ and uΠ
1 · · ·uΠ

n ∈ (LΠ)
∗
. By Lemma A.2, we know

that w = vΠ = (u1 · · ·un)
Π

= uΠ
1 · · ·uΠ

n . Thus we have w ∈ (LΠ)
∗
, which

is the desired result. The other direction can be proved analogously. ⊓⊔

Theorem 6.2 (Fundamental Theorem). For all e ∈ TSF1
, we have

e ≡SF1
o(e) +

∑

e′∈δ(e,A)

AΠ · e′.

Proof. Here we treat the inductive cases not displayed in the main proof, where
we treated only the synchronous case.

– If e = H(e0), derive:

H(e0) ≡SF1
H(o(e0)) +

∑

e′∈δ(e0,A)

H(AΠ) ·H(e′) (IH, compatibility of H)

≡SF1
H(o(e0)) (H(AΠ) = 0)

≡SF1
o(H(e0)) (o(H(e0)) ∈ 2)

≡SF1
o(H(e0)) +

∑

e′∈δ(H(e0),A)

AΠ · e′ (Def. δ)

– If e = e0 + e1, derive:

e0 + e1 ≡SF1
o(e0) +

∑

e′∈δ(e0,A)

AΠ · e′ + o(e1) +
∑

e′∈δ(e1,A)

AΠ · e′ (IH)

≡SF1
o(e0 + e1) +

∑

e′∈δ(e0,A)∪δ(e1,A)

AΠ · e′ (Def. o, merge sums)

≡SF1
o(e0 + e1) +

∑

e′∈δ(e0+e1,A)

AΠ · e′ (Def. δ)
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– If e = e0 · e1, derive:

e0 · e1 ≡SF1

(

o(e0) +
∑

e′∈δ(e0,A)

AΠ · e′
)

· e1 (IH)

≡SF1
o(e0) · e1 +

∑

e′∈δ(e0,A)

(AΠ · e′ · e1) (Distributivity)

≡SF1
o(e0) ·

(

o(e1) +
∑

e′∈δ(e1,A)

AΠ · e′
)

+
∑

e′∈δ(e0,A)

(AΠ · e′ · e1) (IH)

≡SF1
o(e0 · e1) + o(e0) ·

∑

e′∈δ(e1,A)

AΠ · e′ +
∑

e′∈δ(e0,A)

(AΠ · e′ · e1)

(Def. o, distributivity)

≡SF1
o(e0 · e1) +

∑

e′∈∆(e1,e0,A)

AΠ · e′ +
∑

e′∈{e′
0
·e1:e′0∈δ(e0,A)}

AΠ · e′

≡SF1
o(e0 · e1) +

∑

e′∈δ(e0·e1,A)

AΠ · e′ (Def. δ)

– If e = e∗0, we derive:

e∗0 ≡SF1

(

o(e0) +
∑

e′∈δ(e0,A)

AΠ · e′
)∗

(Induction hypothesis)

≡SF1

(

∑

e′∈δ(e0,A)

AΠ · e′
)∗

(o(e0) ∈ 2 and loop tightening)

≡SF1
1 +

(

∑

e′∈δ(e0,A)

AΠ · e′
)

·
(

∑

e′∈δ(e0,A)

AΠ · e′
)∗

(star axiom of SF1)

≡SF1
1 +

(

∑

e′∈δ(e0,A)

AΠ · e′
)

· e∗0 (first two steps)

≡SF1
1 +

∑

e′∈δ(e0,A)

(AΠ · e′ · e∗0) (Distributivity)

≡SF1
o(e∗0) +

∑

e′∈δ(e∗
0
,A)

AΠ · e′ (Def. o, def. δ) ⊓⊔

Lemma 7.2. For all e ∈ TNSF, we have (JeKSF1
)Π = JeKF1

.

Proof. In the main text we have treated the base cases. The inductive cases work
as follows. There are three cases to consider. If e = e0 + e1, then (JeKSKA)

Π
=

(Je0KSKA ∪ Je1KSKA)
Π

= (Je0KSKA)
Π ∪ (Je1KSKA)

Π
(Lemma 5.18). From the induction

hypothesis we obtain (Je0KSKA)
Π

= Je0KKA and (Je1KSKA)
Π

= Je1KKA. Combining

these results we get (JeKSKA)
Π

= Je0KKA ∪ Je1KKA = Je0KKA + Je1KKA = Je0 + e1KKA, so

the claim follows. Secondly, if e = e0 · e1, then (JeKSKA)
Π

= (Je0KSKA · Je1KSKA)
Π

=

(Je0KSKA)
Π · (Je1KSKA)

Π
(Lemma 5.18). From the induction hypothesis we obtain

(Je0KSKA)
Π = Je0KKA and (Je1KSKA)

Π = Je1KKA. We can then conclude that (JeKSKA)
Π =
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Je0KKA · Je1KKA = Je0 · e1KKA. Lastly, if e = e∗0, we get (Je∗0KSKA)
Π

= ((Je0KSKA)
∗
)
Π

=

((Je0KSKA)
Π
)
∗
(Lemma 5.18). From the induction hypothesis we obtain (Je0KSKA)

Π
=

Je0KKA. Thus we have (JeKSKA)
Π = Je0K

∗
KA

= Je∗0KKA and the claim follows. ⊓⊔

Lemma 7.4. Let (M,p) be a Q-linear system such that M and p are guarded.
We can construct Q-vector x that is the unique (up to SF1-equivalence) solution
to (M,p) in SF1. Moreover, if M and p are in normal form, then so is x.

Proof. We will construct x by induction on the size of Q. In the base, let Q = ∅.
In this case the unique Q-vector is a solution. In the inductive step, take k ∈ Q

and let Q′ = Q \ {k}. Then construct the Q′-linear system (M ′, p′) as follows:

M ′(i, j) = M(i, k) ·M(k, k)
∗ ·M(k, j) +M(i, j)

p′(i) = p(i) +M(i, k) ·M(k, k)
∗ · p(k)

As Q′ is a strictly smaller set than Q and M ′ is guarded, we can apply our
induction hypothesis to (M ′, p′). So we know by induction that (M ′, p′) has a
unique solution x′. Moreover, if M ′ and p′ are in normal form, so is x′; note that
if M and p are in normal form, then so are M ′ and p′.

We use x′ to construct the Q-vector x:

x(i) =

{

x′(i) i 6= k

M(k, k)∗ ·
(

p(k) +
∑

j∈Q′ M(k, j) · x′(j)
)

i = k

The first thing to show now is that x is indeed a solution of (M,p). To this end,
we need to show that M · x+ p ≡SF1

x. We have two cases. For i ∈ Q′ we derive:

x(i) = x′(i) (Def. x)

≡SF1
p′(i) +

∑

j∈Q′

M ′(i, j) · x′(j) (x′ solution of (M ′, p′))

≡SF1
p(i) +M(i, k) ·M(k, k)∗ · p(k)

+
∑

j∈Q′

(M(i, k) ·M(k, k)
∗ ·M(k, j) +M(i, j)) · x′(j) (Def. (M ′, p′))

≡SF1
p(i) +

∑

j∈Q′

M(i, j) · x′(j)

+M(i, k) ·M(k, k)
∗ ·

(

p(k) +
∑

j∈Q′

M(k, j) · x′(j)
)

(Distributivity)

≡SF1
p(i) +

∑

j∈Q′

M(i, j) · x(j) +M(i, k) · x(k) (Def. x)

≡SF1
p(i) +

∑

j∈Q

M(i, j) · x(j) (Merge sum)
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For i = k, we derive:

x(k) = M(k, k)∗ ·
(

p(k) +
∑

j∈Q′

M(k, j) · x′(j)
)

(Def. x)

≡SF1
(1 +M(k, k) ·M(k, k)

∗
) ·

(

p(k) +
∑

j∈Q′

M(k, j) · x′(j)
)

(star axiom)

≡SF1
p(k) +

∑

j∈Q′

M(k, j) · x′(j)

+M(k, k) ·M(k, k)
∗ ·

(

p(k) +
∑

j∈Q′

M(k, j) · x′(j)
)

(Distributivity)

≡SF1
p(k) +

∑

j∈Q′

M(k, j) · x(j) +M(k, k) · x(k) (Def. x)

≡SF1
p(k) +

∑

j∈Q

M(k, j) · x(j) (Merge sum)

We now know that x is a solution to (M,p) because M ·x+p ≡SF1
x. Furthermore,

if M and p are in normal form, then so is x′, and thus x is in normal form by
construction.

Next we claim that x is unique. Let y be any solution of (M,p). We choose
the Q′-vector y′ by taking y′(i) = y(i). To see that y′ is a solution to (M ′, p′), we
first claim that the following holds:

y(k) ≡SF1
M(k, k)∗ ·

(

p(k) +
∑

j∈Q′

M(k, j) · y(j)
)

(3)

To see that this is true, derive

y(k) ≡SF1
p(k) +

∑

j∈Q

M(k, j) · y(j) (y solution of (M,p))

≡SF1
p(k) +M(k, k) · y(k) +

∑

j∈Q′

M(k, j) · y(j) (Split sum)

≡SF1
M(k, k)

∗ ·
(

p(k) +
∑

j∈Q′

M(k, j) · y(j)
)

(Unique fixpoint axiom)

Note that we can apply the unique fixpoint axiom because we know that M is
guarded and thus that H(M(k, k)) = 0.
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Now we can derive the following:

y′(i) = y(i) (Def. y)

≡SF1
p(i) +

∑

j∈Q

M(i, j) · y(j) (y solution of (M,p))

≡SF1
p(i) +M(i, k) · y(k) +

∑

j∈Q′

M(i, j) · y(j) (Split sum)

≡SF1
p(i) +

∑

j∈Q′

M(i, j) · y(j)

+M(i, k) ·M(k, k)
∗ ·

(

p(k) +
∑

j∈Q′

M(k, j) · y(j)
)

(Equation 3)

≡SF1
p(i) +M(i, k) ·M(k, k)∗ · p(k)

+
∑

j∈Q′

(

M(i, k) ·M(k, k)
∗ ·M(k, j) +M(i, j)

)

· y(j) (Distributivity)

≡SF1
p′(i) +

∑

j∈Q′

M ′(i, j) · y(j) (Def. (M ′, p′))

Thus y′ is a solution to (M ′, p′). As x′ is the unique solution to (M ′, p′), we know
that y′ ≡SF1

x′.
For i 6= k we know that x(i) = x′(i) ≡SF1

y′(i) = y(i). For i = k we can derive:

y(k) ≡SF1
M(k, k)∗ ·

(

p(k) +
∑

j∈Q′

M(k, j) · y(j)
)

(Equation 3)

≡SF1
M(k, k)

∗ ·
(

p(k) +
∑

j∈Q′

M(k, j) · y′(j)
)

(Def. y′)

≡SF1
M(k, k)∗ ·

(

p(k) +
∑

j∈Q′

M(k, j) · x′(j)
)

(x′ ≡SF1
y′)

≡SF1
M(k, k)

∗ ·
(

p(k) +
∑

j∈Q′

M(k, j) · x(j)
)

(Def. x′)

≡SF1
x(k) (Def. x)

Thus, y ≡SF1
x, thereby proving that x is the unique solution to (M,p). ⊓⊔
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