
New

Dexter Kozen1,2

Department of Computer Science
Cornell University

Ithaca, New York 14853–7501, USA

Abstract

We propose a theoretical device for modeling the creation of new indiscernible semantic objects during
program execution. The method fits well with the semantics of imperative, functional, and object-oriented
languages and promotes equational reasoning about higher-order state.

Keywords: Operational semantics, functional programming, imperative programming, object-oriented
programming, indiscernibles

1 Introduction

There are many situations in computing in which we want to create something

new. Often we do not really care exactly what is created, as long as it has the

right properties. For example, when allocating a new heap cell, we do not care

exactly what its address in memory is, but only that we can store and retrieve

data there. For that purpose, any heap cell is as good as any other. In object-

oriented programming, when we create a new object of a class, we only care that

it has the right fields and methods and is different from every other object of that

class previously created. In the λ-calculus, when we α-convert to rename a bound

variable, we do not care what the new variable is as long as it is fresh.

As common as it is, the intuitive act of creating a new object out of nothing does

not fit well with set-theoretic foundations. Such situations are commonly modeled

as an allocation of one of a previously existing collection of equivalent candidates.

One often sees statements such as, “Let Var be a countable set of variables. . . ,” or,

“Let L be a countable set of heap cells. . . ” The set is assumed to exist in advance

1 Thanks to Kamal Aboul-Hosn, Robert Constable, Nate Foster, Jean-Baptiste Jeannin, Konstantinos
Mamouras, Andrew Myers, Dirk Pattinson, Mark Reitblatt, Alexandra Silva, Aaron Stump, and all the
members of the PLDG seminar at Cornell.
2 Email: kozen@cs.cornell.edu

Available online at www.sciencedirect.com

Electronic Notes in Theoretical Computer Science 286 (2012) 17–42

1571-0661 © 2012 Elsevier B.V.

www.elsevier.com/locate/entcs

doi:10.1016/j.entcs.2012.08.003
Open access under CC BY-NC-ND license.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82145739?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:kozen@cs.cornell.edu
mailto:kozen@cs.cornell.edu
http://www.elsevier.com/locate/entcs
http://dx.doi.org/10.1016/j.entcs.2012.08.003
http://dx.doi.org/10.1016/j.entcs.2012.08.003
http://www.sciencedirect.com
http://creativecommons.org/licenses/by-nc-nd/3.0/

of its use and is assumed to be large enough that fresh elements can always be

obtained when needed. Standard references on the semantics of objects also tend

to treat object creation as allocation [1,23,25].

The difficulty here is that the candidates for allocation should be theoretically

indiscernible, whereas real implementations must somehow make a deterministic

choice. But to choose requires some way of distinguishing the chosen from the un-

chosen, thus the candidates cannot be indiscernible after all. Moreover, cardinality

constraints often interfere with closure conditions on the language. For example,

we only need a countable set of variables to represent an infinitary λ-term, but if

all available variables already occur in the term, there would be none left over in

case we needed a fresh one for α-conversion. One could permute the variables to

free one up, but that is awkward.

The issue is related to the philosophical problem of the identity of indiscernibles.

Leibniz proposed that objects that have all the same properties must in fact be the

same object. Although the subject of much debate in the philosophical litera-

ture [8,9,14], it is certainly desirable in programming language semantics, especially

object-oriented programming, to allow the existence of distinct but indiscernible se-

mantic objects. But it can also be the source of much confusion, as is well known to

anyone who has ever tried to explain to introductory Java students why one should

never compare strings with == .

The issue also arises in systems involving terms with variable binders, such as

quantificational logic and the λ-calculus. We would like to treat bound variables as

indiscernible for the purposes of α-conversion and safe (capture-avoiding) substitu-

tion. Several devices for the generation of fresh variables have been proposed, both

practical and theoretical, the earliest possibly being the gensym facility of LISP.

Popular variable-avoiding alternative representations of λ-terms include de Bruijn

indices and Stoy diagrams [5]. The NuPrl system [3,7] has a facility for generating

nonces, or objects for which nothing can be tested except identity. The ν-calculus

of Pitts and Stark has a similar objective [6,26]. Nominal logic [11,12,27] is a logical

system for reasoning about syntactic terms with binders.

In this paper we propose a device for creating new indiscernible objects in a

semantic domain. Simply put, a semantic object is created by allocating a name

for it. The object itself is defined to be the congruence class of all its names. A

system such as nominal logic or the ν-calculus can be used to handle the generation

of names in the syntactic domain.

The idea can be illustrated with a very simple example. Consider a domain

of semantic objects D = {a, b, c, . . .}. Let φ be a first-order formula with free

variables, say x = y∧y �= z. According to the usual Tarskian definition of truth, we

could interpret φ relative to a valuation σ : Var → D, provided {x, y, z} ⊆ domσ,

and the judgment σ |= φ would have a well-defined truth value. For example, if

σ(x) = σ(y) = c and σ(z) = a, then σ would satisfy φ, along with many other other

valuations over D.

However, suppose we did not specify the actual values of x, y, z, but only which

variables represent the same values. Thus instead of σ : Var → D, we would

D. Kozen / Electronic Notes in Theoretical Computer Science 286 (2012) 17–4218

have a set of equations α ⊆ Var × Var specifying aliasing relationships between the

variables. For the σ above, α would consist of the single equation x = y. The free

algebra generated by {x, y, z} modulo the congruence induced by x = y has two

elements, namely the two congruence classes {x, y} and {z}. Under the canonical

interpretation

x �→ {x, y} y �→ {x, y} z �→ {z},

the formula φ is satisfied. The presentation α of the free algebra contains enough

information to determine the truth of the formula; there is no need to represent the

actual values.

The relation α is called an aliasing relation. It generates a congruence, that is,

the smallest relation on terms that contains α and is reflexive, symmetric, transi-

tive, and a congruence with respect to any operations defined on the elements. To

represent the creation of a new object, we simply update α in a way that ensures

that there is no aliasing between the variable instantiated with the new object and

others of the same type currently represented in the state. We do not need to

worry about how to select a new semantic object from a previously defined set or

whether there are enough of them available; in essence, that responsibility is com-

pletely borne by the allocation of syntactic names. The advantage of this approach

is that objects in the semantic domain can be generated ex nihilo and are truly

indiscernible. An added benefit is that we can reason equationally with α, and

this appears to align well with popular approaches for reasoning about higher-order

program state involving logical relations and bisimulation [2,6,10,13,16,20,26,28].

In this paper we develop this basic idea into an operational semantics for a

higher-order functional programming language with imperative and object-oriented

features. We give a set of operational rules that describe how the state, as repre-

sented by σ and α, should be updated as each atomic action is performed. The

semantics is an extension of capsules [17,18,19]. We show how objects, nonces, ref-

erences, arrays, and records fit into this framework. As an illustration, we show

how to model safe substitution in the λ-calculus with nonces as variables and show

that α-conversion is an idempotent operation.

2 Capsules

Capsules [17,18,19] are a precursor to the system introduced here. Capsule seman-

tics does not rely on heaps, stacks, or any other form of explicit memory, but only

on names and bindings.

2.1 Syntax

A capsule is a pair 〈e, σ〉, where e is a λ-term or constant and σ is a partial function

from variables to irreducible λ-terms or constants such that

(i) FV(e) ⊆ domσ, and

(ii) if x ∈ domσ, then FV(σ(x)) ⊆ domσ,

D. Kozen / Electronic Notes in Theoretical Computer Science 286 (2012) 17–42 19

where FV(e) is the set of free variables of e. Thus the free variables of a capsule

are not really free; every variable in 〈e, σ〉 either occurs in the scope of a λ or is

bound by σ to a constant or irreducible expression, which represents its value. A

capsule represents a closed λ-coterm (infinitary λ-term). The closure conditions (i)

and (ii) preclude catastrophic failure due to access of unbound variables. There

may be circularities, which enables a representation of recursive functions.

Capsules may be α-converted. Abstraction operators λx and the occurrences

of x bound to them may be renamed as usual. Variables in domσ may also be

renamed along with all free occurrences. Capsules that are equivalent in this sense

represent the same value.

Values are also preserved by garbage collection. A monomorphism of capsules

h : 〈d, σ〉 → 〈e, τ〉 is an injective map h : domσ → dom τ such that

• τ(h(x)) = h(σ(x)) for all x ∈ domσ, and

• h(d) = e,

where h(e) = e[x/h(x)] (safe substitution). The set of monomorphic preimages of

a given capsule contains an initial object that is unique up to a permutation of

variables. This is the garbage-collected version of the capsule.

2.2 Semantics

Capsule evaluation semantics looks very much like the original evaluation semantics

of LISP, with the added twist that a fresh variable is substituted for the parameter

in function applications. The relevant small-step rule is

〈(λx.e) v, σ〉 → 〈e[x/y], σ[y/v]〉,

where y is fresh. In the original evaluation semantics of LISP, the right-hand side is

〈e, σ[x/v]〉, which gives dynamic scoping. This simple change faithfully models β-

reduction with safe substitution in the λ-calculus, providing static scoping without

closures [17,19]. It also handles local variable declaration in recursive functions

correctly.

Another evaluation rule of particular note is the assignment rule:

〈x := v, σ〉 → 〈(), σ[x/v]〉

where v is irreducible. The closure condition (i) of §2.1 ensures that x is already

bound in σ, and the assignment rebinds x to v. Assignment is also used to create

recursive functions via backpatching, also known as Landin’s knot, without the use

of fixpoint combinators.

See [17,18,19] for further details and examples.

3 Syntax

In this section we define the syntax of our language. We use the same notation for

rebinding and substitution. Given a function σ, we write σ[x/v] for the function

D. Kozen / Electronic Notes in Theoretical Computer Science 286 (2012) 17–4220

such that σ[x/v](y) = σ(y) for y �= x and σ[x/v](x) = v. Given an expression e,

we write e[x/d] for the expression e with d substituted for all free occurrences of x,

renaming bound variables as necessary to avoid capture.

3.1 Types

Our type system distinguishes between constructive types and creative types. Con-

structive objects are constants or are constructed from other objects using con-

structors. They are represented directly in the state, bound by an environment σ

to a variable of the same type. Creative objects, on the other hand, do not exist

in advance and are not built from constructors, but are created on the fly during

program execution using new. They can be used to model objects (in the sense

of object-oriented programming), references, arrays, records, and nonces. Creative

objects have a weaker ontological status than constructive objects in that they have

no direct representation in the state, but only indirect representation in the form

of an aliasing relation α.

The collection of all types is denoted Type. Let Var = {x, y, z, . . .} be an unlim-

ited supply of variables. A type environment is a partial function Γ : Var ⇀ Type
with finite domain domΓ.

3.1.1 Constructive Types

Constructive types are built from type constructors. We have the function space

constructor →, products and coproducts, and coinductive types defined with finite

systems of fixpoint equations.

Products and coproducts are of the form

∏
Γ =

∏
x∈domΓ

Γ(x)
∑

Γ =
∑

x∈domΓ

Γ(x)

where Γ is a type environment. The corresponding projections and injections have

type

πx :
∏

Γ → Γ(x) ιx : Γ(x) → ∑
Γ

for x ∈ domΓ. The unit type � is the empty product, and the type of booleans is

� = �+ �.

Our product and coproduct types are not dependent types, as Var is not a type.

All function, product, and coproduct types are constructive.

3.1.2 Creative Types

In addition to constructive types, we have creative types C(
∏

Γ), where Γ : Var ⇀
Type is a type environment. The type C(

∏
Γ) represents a class of objects having

fields named x for x ∈ domΓ in the sense of object-oriented programming. Values

of type C(
∏

Γ) are creative objects. The field x has type Γ(x), which can be either

constructive or creative.

D. Kozen / Electronic Notes in Theoretical Computer Science 286 (2012) 17–42 21

3.1.3 Coinductive Types

Coinductive types are defined by finite systems of fixpoint equations. For example,

the natural numbers are � = � + �, where � is a type variable. Formally, � =∑
Γ, where Γ(z) = � and Γ(s) = �. The number 3 would be represented by

ιs (ιs (ιs (ιz ()))). Since the type is coinductive, there is also an infinite element

ιs (ιs (ιs (. . .))).

For another example, lists and streams over � are defined by

intlist = �+ (�× intlist)

where intlist is a type variable. Formally, intlist =
∑

Δ, where

Δ(nil) = � Δ(cons) =
∏

Γ Γ(hd) = � Γ(tl) = intlist

Then ∑
Δ = �+

∏
Γ ιnil : �→ ∑

Δ ιcons :
∏

Γ → ∑
Δ∏

Γ = �× intlist πhd :
∏

Γ → � πtl :
∏

Γ → intlist

Both constructive and creative types may appear in a coinductive type definition.

3.2 Expressions

Expressions d, e, . . . are defined inductively. Variables are expressions, as are typed

projections πx and injections ιx. The unit object () is the null tuple of type �, and

booleans 0 = ιfalse() and 1 = ιtrue() are of type �. We might also include other

typed constants.

Compound expressions are formed with the following constructs, subject to typ-

ing constraints.

• λ-abstraction λx.e

• application (d e)

• assignment x := e or d.x := e

• tupling (ex | x ∈ domΓ)

• case analysis [ex | x ∈ domΓ]

• projection e.x

• object creation new Γ(e)

• identity test d = e

We also have defined expressions

• booleans 0, 1 ιfalse(), ιtrue()

• composition d ; e (λx.e) d

• conditional if b then d else e [λx.d, λx.e] b

• while loop while b do e let rec w = λx.if b
then e ; w () else () in w ()

D. Kozen / Electronic Notes in Theoretical Computer Science 286 (2012) 17–4222

• local definition let x = d in e (λx.e) d

• recursive definition let rec x = d in e let x = ⊥ in (x := d) ; e

It is not necessary to worry about the capture of free occurrences of x in the com-

position, conditional, and while loop because the type of x is � in all cases.

The ⊥ in the definition of let rec is a special constant of the appropriate type

designated for this purpose. This technique is known as Landin’s knot. The constant

⊥ is treated specially in the small-step operational semantics (see §4.6) in that a

variable bound to it is considered irreducible, effectively allowing Landin’s knot to

create self-referential objects.

The let rec construct is used to create recursive functions and values of coinduc-

tive types. It specifies a value that is the unique solution of the given equation

in a certain final coalgebra. For recursive functions, this is a λ-coterm (infinitary

λ-term), as in capsules (see §2). For coinductive datatypes, it is a multigraph re-

alization as defined in [22]. In both cases, the infinite object is regular and has a

finite representation. For example, the type of integer lists and streams was defined

in §3.1.3. An element of this type is the infinite stream of alternating 0s and 1s,

which can be defined by

let rec x = ιcons(0, ιcons(1, x)) in e

The mutually recursive definition

let rec x1 = d1 and . . . and xn = dn in e

can be coded using the single-variable form of let rec with products and projections

or with nested let recs.

The case analysis construct [ex | x ∈ domΓ] corresponds to a case or match
statement of functional languages. It is used to extract the elements of a coproduct

based on their types. For example, the map function that maps a given function

f : �→ � over a given integer list would be defined by let rec to satisfy the equation

map = λ(f : �→ �).[ιnil, λx.ιcons(f(πhd x), map f (πtl x))]

This would be written more conventionally as

map (f : �→ �) (� : intlist) : intlist =
case � of

| ιnil() → ιnil()

| ιcons x → ιcons(f(πhd x), map f (πtl x))

3.2.1 Typing Rules

Let Δ : Var ⇀ Type be a type environment. We write Δ � e : α if the type α

can be derived for the expression e by the typing rules of Fig. 1. The constructs

let rec x = d in e and let x = d in e are typed as (λx.e) d.

If Δ � e : α for some α, we say that e is Δ-well-typed, or just well-typed if

D. Kozen / Electronic Notes in Theoretical Computer Science 286 (2012) 17–42 23

Δ � c : type(c), c ∈ Const Δ � x : Δ(x), x ∈ domΔ

Δ � x : α Δ � e : β

Δ � λx.e : α → β

Δ � d : α → β Δ � e : α

Δ � (d e) : β

Δ � x : α Δ � e : α

Δ � x := e : �

Δ � d.x : α Δ � e : α

Δ � d.x := e : �

Δ � b : � Δ � d : α Δ � e : α

Δ � if b then d else e : α

Δ � b : � Δ � e : �

Δ � while b do e : �

Δ � d : � Δ � e : α

Δ � d ; e : α

Δ � d : C(
∏

Γ) Δ � e : C(
∏

Γ)

Δ � d = e : �

Δ � e : C(
∏

Γ) Γ � x : β

Δ � e.x : β

Δ � e :
∏

Γ

Δ � new Γ(e) : C(
∏

Γ)

Δ � ex : Γ(x), x ∈ domΓ

Δ � (ex | x ∈ domΓ) :
∏

Γ

Δ � ex : Γ(x) → β, x ∈ domΓ

Δ � [ex | x ∈ domΓ] :
∑

Γ → β

Fig. 1. Typing Rules

Δ is understood. Unless otherwise mentioned, we will assume that the use of an

expression in the text implies that it is well-typed.

3.2.2 Assignable Expressions

An assignable expression is a Δ-well-typed expression of the form x0 .x1xn,

n ≥ 0, where xi ∈ Var. It follows from the typing rules that each nonnull proper

prefix is creative; that is, there are Γi for 0 ≤ i ≤ n such that Δ = Γ0, Γi(xi) =

C(
∏

Γi+1) for 0 ≤ i ≤ n−1, and xn ∈ domΓn. An assignable expression may appear

on the left-hand side of an assignment operator := and is considered irreducible when

appearing in that position (although non-irreducible expressions may appear on the

left-hand side of an assignment). The set of Δ-well-typed assignable expressions is

denoted AΔ. This set can be infinite in general due to coinductive types, but it

is a regular set considered as a set of strings over Var. Assignable expressions are

denoted u, v, w,

Assignable expressions can be either constructive or creative. The set of Δ-well-

typed creative (respectively, constructive) assignable expressions is denoted CAΔ

(respectively, NAΔ). Like AΔ, these sets can be infinite in general.

3.2.3 Irreducible Expressions

Irreducible expressions (or values) are defined relative to a global type environment

Δ. They are Δ-well-typed expressions for which no small-step operational rule

applies. They include

D. Kozen / Electronic Notes in Theoretical Computer Science 286 (2012) 17–4224

• constants,

• λ-abstractions,

• creative assignable expressions, i.e. elements of CAΔ,

• expressions (vx | x ∈ domΓ), where all vx are irreducible,

• expressions [vx | x ∈ domΓ], where all vx are irreducible,

• expressions ιx v, where v is irreducible.

In addition, for the purpose of Landin’s knot, a constructive variable x is consid-

ered irreducible if σ(x) = ⊥; see §4.6. Constructive assignable expressions are not

irreducible in general. The set of constructive irreducible expressions is denoted

NValΔ.

3.3 Aliasing Relations

Let α ⊆ CAΔ ×CAΔ be a set of pairs of creative assignable expressions such that if

(u, v) ∈ α, then Δ � u : C(
∏

Γ) iff Δ � v : C(
∏

Γ). The set α is called an aliasing

relation. It represents a set of well-typed equations between creative assignable

expressions.

The congruence generated by α is the smallest binary relation on AΔ containing α

and closed under the rules of Fig. 2. There is some redundancy among the premises

(u, v) ∈ α

α � u = v

Δ � u : β

α � u = u

α � u = v

α � v = u

α � u = v α � v = w

α � u = w

Δ � u : C(
∏

Γ) Δ � v : C(
∏

Γ) x ∈ domΓ α � u = v

α � u.x = v.x

Fig. 2. Congruence Rules

of the last rule (congruence), as one can show inductively that if α � u = v, then u

and v have the same type. Note that u and v can be constructive, even though the

elements of α are all creative. The congruence class of v ∈ AΔ is denoted [v]α.

We can form the free algebra AΔ/α = {[u]α | u ∈ AΔ}. It is an algebra in

the sense that the projections .x, regarded as unary operations, are well-defined on

congruence classes; that is, if [u]α = [v]α, then by congruence, [u.x]α = [v.x]α
whenever u.x is well-typed, so it makes sense to define [u]α.x = [u.x]α. Intuitively,

if Δ � u = v, then u and v are aliases for the same object, so the values of the fields

u.x and v.x should also be the same.

As mentioned, the set AΔ can be infinite in general, but the computational rules

will maintain the invariant that AΔ/α is finite. One can regard AΔ/α as a finite

graph with nodes [u]α and labeled edges [u]α
x→ [u.x]α.

We denote by CAΔ/α and NAΔ/α the sets of creative and constructive elements

D. Kozen / Electronic Notes in Theoretical Computer Science 286 (2012) 17–42 25

of AΔ/α, respectively; that is, the sets

CAΔ/α = {[u]α | u ∈ CAΔ}
NAΔ/α = {[u]α | u ∈ NAΔ} = AΔ/α− CAΔ/α.

3.4 Equational Reasoning

The congruence generated by α extends inductively to effect-free constructors with

the obvious syntactic congruence rule for each constructor. For example, for prod-

ucts and injections,

α � dx = ex, x ∈ domΓ

α � (dx | x ∈ domΓ) = (ex | x ∈ domΓ)

α � d = e

α � ιx d = ιx e
.

The only nonobvious rule is λ-abstraction, in which we must treat the bound variable

specially.

α � d[x/z] = e[x/z], z fresh

α � λx.d = λx.e
.

There is no sound congruence rule for assignment := or new, as these constructs
have side effects. For example, it would never be the case that new C(

∏
Γ) =

new C(
∏

Γ), because evaluation of each side creates an object.

These rules, along with α-conversion, renaming by a permutation, and garbage

collection (§3.6) can be used in equational reasoning on program states.

3.5 Program States

A program state is represented by a quadruple 〈e, Δ, σ, α〉, where:
• Δ : Var ⇀ Type is a type environment

• α ⊆ CAΔ × CAΔ is a Δ-well-typed equational presentation

• σ : NAΔ/α → NValΔ is a Δ-well-typed valuation

• e is a Δ-well-typed expression

The domain of σ is officially NAΔ/α, but we will often abuse notation and write

σ(u) for σ([u]α).

The component e is the expression to be evaluated. The typing of expressions is

determined by Δ. The components σ and α comprise an environment that deter-

mines the interpretation of free variables. Conditions (i) and (ii) of §2.1 for capsules

are implied by the facts that e and σ([u]α) are well-typed and the domain of σ is

NAΔ/α. Formally, σ is also defined on bound variables, but that is unnecessary and

could be relaxed.

The set of states is a nominal set over the set of names Var in the sense of

nominal logic [11,12,27].

D. Kozen / Electronic Notes in Theoretical Computer Science 286 (2012) 17–4226

3.6 Garbage Collection

Our notions of α-conversion and garbage collection are based on capsules (see §2.1)
with appropriate modifications to account for the aliasing relation α. As with

capsules, values are preserved.

Any variable declared in Δ may be α-converted. If a fresh variable is needed

for α-conversion, its type is first declared in Δ. Renaming variables in some type

environment Γ used in the declaration of a product or sum does not constitute

α-conversion and does not result in an equivalent state.

As with capsules, garbage collection is defined in terms of monomorphisms. A

monomorphism

h : 〈e, Δ, σ, α〉 → 〈e′, Δ′, σ′, α′〉

is an injective map h : domΔ → domΔ′ such that

(i) h is type-preserving, that is, Δ(x) = Δ′(h(x));

(ii) modulo α and α′, h is an algebra monomorphism AΔ/α → AΔ′/α′;

(iii) σ′([h(x)]α′) = h(σ([x]α)) for all [x]α ∈ domσ; and

(iv) e′ = h(e),

where h(e) = e[x/h(x)]. Like capsules, every state has an initial monomorphic

preimage, which is its garbage-collected version and which is unique up to a per-

mutation of variables and variation in the presentation α of AΔ/α.

However, unlike capsules, we cannot collect garbage simply by removing vari-

ables inaccessible from e, because some of them may be needed in the equational

presentation α of AΔ/α. Removing the equations containing them could cause prop-

erty (ii) to be violated; h would be a homomorphism but not a monomorphism. To

ensure (ii), we show that AΔ/α has a canonical presentation in which α is minimal

and the pairs are of a certain form. This form will also be used in the semantics of

assignment (§4.5).
Lemma 3.1 Given an aliasing relation α on AΔ, there is a set of variables X, an

extension Δ′ of Δ with domain X ∪ domΔ, and an aliasing relation α′ on AΔ′ with

the following properties:

(i) AΔ/α and AΔ′/α′ are isomorphic;

(ii) all pairs in α′ are of the form (x, z) or (x.y, z), where x, z ∈ X;

(iii) every congruence class in CAΔ′/α′ contains exactly one variable of X.

Moreover, Δ′ and α′ can be computed from Δ and α in time O(nα(n)), where α(n)

is the inverse of Ackermann’s function.

Proof. Let A be the set of subterms of terms appearing in α. Form the congruence

closure α̂ of α on A. The congruence closure is the smallest relation on A that

contains α and is closed under the rules of Fig. 2 applied only to terms in A. It

is shown in [21] that for s, t ∈ A, α � s = t iff (s, t) ∈ α̂; that is, one need not go

outside of A to prove congruence between two terms in A.

D. Kozen / Electronic Notes in Theoretical Computer Science 286 (2012) 17–42 27

One can form the congruence closure for a signature involving only unary func-

tions in time O(nα(n)). The algorithm is essentially the same as that used to

minimize deterministic finite-state automata [4,15,24]. By “forming the congru-

ence closure,” we do not mean computing the relation α̂ itself—that would take

too long to write down—but rather forming the congruence classes and associating

each element of A with its respective congruence class so that we can subsequently

determine whether (s, t) ∈ α̂ (that is, α � s = t) for s, t ∈ A in constant time.

Let X be a set of variables such that each creative α-congruence class contains

exactly one element of X. If [u]α does not contain a variable, we can add a fresh

variable x and the equation (x, u) to α, although this step is not strictly necessary,

as our operational semantics maintains the invariant that every creative congruence

class contains a variable. Let Δ′ be Δ extended as necessary with the appropriate

typings for x ∈ X.

Now let

α′ = α̂ ∩ ({(x, z) | x ∈ X, z ∈ Var} ∪ {(x.y, z) | x, z ∈ X}).

The set α′ has the following properties:

• For each u ∈ A, there is exactly one x ∈ X such that α′ � x = u.

• For each x ∈ X and y ∈ domΓ, where Δ′(x) = C(
∏

Γ), there is exactly one z ∈ X

such that (x.y, z) ∈ α′.

It follows that α and α′ generate the same congruence closure α̂, thus AΔ/α and

AΔ′/α′ are isomorphic. �

Now we can collect garbage by forming the reduced presentation as described in

Lemma 3.1 and removing inaccessible variables from Δ, σ, and α, where a variable

is accessible if it is in the smallest set of variables containing the variables of e and

closed under the following operations:

• If x is accessible, (x, z) ∈ α or (x.y, z) ∈ α, and z ∈ X, then z is accessible;

• if x is accessible and z occurs in σ([x]α) or σ([x.y]α), then z is accessible.

The monomorphism h is defined on the subalgebra of AΔ/α generated by the ac-

cessible variables.

4 Operational Semantics

The operational semantics of the language is defined by the small-step rules given be-

low. In addition, there are context rules that define a standard shallow applicative-

order evaluation strategy (leftmost innermost, call-by-value) and left-to-right eval-

uation of tuples and expressions e.x.

D. Kozen / Electronic Notes in Theoretical Computer Science 286 (2012) 17–4228

4.1 Function Application

Our rule for function application is adapted from the rule for capsules (see §2.2):

〈(λx.e) v, Δ, σ, α〉 → 〈e[x/y], Δ[y/Δ(x)], σ′, α′〉,

where y is fresh and

(σ′, α′) =

{
(σ[[y]α/v], α) if Δ(x) is constructive

(σ, α ∪ {(y, v)}) if Δ(x) is creative.

As with capsules, a fresh variable y is conjured and given the same type as x,

resulting in a new global type environment Δ[y/Δ(x)]. If the type is constructive,

σ is updated with the value v, and α is unchanged. If the type is creative, σ is

unchanged, but α is updated with the new alias (y, v).

4.2 Creation

The following rule creates a new creative object:

〈new Γ(v), Δ, σ, α〉 → 〈y, Δ[y/C(
∏

Γ)], σ′, α′〉,

where y is fresh and

α′ = α ∪ {(y.x, vx) | x ∈ domΓ, Γ(x) creative}
σ′ = σ[[y.x]α′/vx | x ∈ domΓ, Γ(x) constructive]

The object is represented by a fresh variable y, which is added to the domain of

Δ with the appropriate creative type. The value v is a tuple supplying the initial

values of the fields. The entities α and σ are updated to assign the fields of the new

object their initial values.

4.3 Assignment to Constructive Expressions

Assignment for constructive types is essentially the same as for capsules. For u ∈
NAΔ and v irreducible of the same constructive type,

〈u := v, Δ, σ, α〉 → 〈(), Δ, σ[[u]α/v], α〉.

Here Δ does not need to be updated, because u is already well-typed.

4.4 Assignment to Creative Variables

Before we can define the semantics of assignments to creative assignable expressions,

we need to lay some groundwork. The issue is that assignment to a creative expres-

sion may change the free algebra presented by α if the expression to be assigned is

involved in the presentation.

D. Kozen / Electronic Notes in Theoretical Computer Science 286 (2012) 17–42 29

First we consider the case of an assignment x := v to a creative variable x ∈
domΔ. Let Δ′ = Δ[z/Δ(x)], where z �∈ domΔ. Define g : domΔ → AΔ′ by

g(x) = z g(u) = u, u ∈ domΔ− {x}. (1)

Define h : domΔ′ → AΔ by

h(z) = x h(x) = v h(u) = u, u ∈ domΔ′ − {z, x}. (2)

Extend h uniquely to a homomorphism h : AΔ′ → AΔ by inductively defining

h(u.y) = h(u).y for y ∈ domΓ, where Δ′ � u : C(
∏

Γ). Likewise, extend g uniquely

to a homomorphism g : AΔ → AΔ′ . Define a new set of axioms on AΔ′ :

α′ = {(x, g(v))} ∪ {(g(s), g(t)) | (s, t) ∈ α}. (3)

Lemma 4.1 Modulo α and α′, the homomorphisms g and h are well defined and

are inverses, thus the quotient algebras AΔ/α and AΔ′/α′ are isomorphic.

Proof. First we observe that h is a left inverse of g:

h(g(x)) = h(z) = x h(g(u)) = h(u) = u, u ∈ domΔ− {x}.

Moreover, g is a left inverse of h modulo α′:

g(h(z)) = g(x) = z g(h(u)) = g(u) = u, u ∈ domΔ′ − {z, x},

and since (x, g(v)) is an axiom of α′ and g(h(x)) = g(v),

α′ � g(h(x)) = x.

Since h is a left inverse of g on generators domΔ of AΔ, and since h and g are

homomorphisms, h is a left inverse of g on all elements of AΔ. Similarly, g is a left

inverse of h modulo α′ on all elements of AΔ′ .

Now we claim that

α′ � s = t ⇒ α � h(s) = h(t), (4)

thus h is well-defined modulo α and α′. By general considerations of universal

algebra, it suffices to show that (4) holds for the axioms (s, t) ∈ α′. For the axiom

(x, g(v)), we wish to show α � h(x) = h(g(v)). This follows immediately from

the facts that h(x) = v and h is a left-inverse of g. For the axioms (g(s), g(t)) for

(s, t) ∈ α, we have α � s = t, and since h is a left-inverse of g, α � h(g(s)) = h(g(t)).

We have shown that h composed with the canonical map AΔ → AΔ/α is well-

defined on α′-congruence classes, therefore reduces to a homomorphism

h′ : AΔ′/α′ → AΔ/α. (5)

D. Kozen / Electronic Notes in Theoretical Computer Science 286 (2012) 17–4230

Likewise, one can show that α � s = t implies α′ � g(s) = g(t) by the same

argument, thus g reduces to a homomorphism

g′ : AΔ/α → AΔ′/α′. (6)

Finally, since h is a left inverse of g and g is a left inverse of h modulo α′, it follows
that g′ and h′ are inverses, thus constitute an isomorphism between AΔ/α and

AΔ′/α′. �

Lemma 4.1 allows us to define the semantics of assignment to a creative variable:

〈x := v, Δ, σ, α〉 → 〈(), Δ[z/Δ(x)], σ′, α′〉,

where z is fresh, σ′ = σ ◦h′, and α′ and h′ are as defined in (3) and (5), respectively.

4.5 Assignment to Creative Fields

Now we treat the case of an assignment u.y := v, where both u and u.y are creative.

As before, we need to ensure that u.y is not involved in the axiomatization α of the

quotient structure so that the assignment will have no unintended consequences.

However, unlike the previous case, if α � u = v, then assigning to u.y also assigns

the same value to v.y due to the aliasing. Moreover, there is not necessarily an

isomorphism between the two structures.

We first put α into the reduced form of Lemma 3.1. Let X be the set defined

in that lemma. We can find variables x, z, w ∈ X such that α � u = x, α � v = w,

and (x.y, z) ∈ α. We then define

〈u.y := v, Δ, σ, α〉 → 〈(), Δ, σ′, α′〉

where α′ = (α − {(x.y, z)}) ∪ {(x.y, w)} and σ′ is defined to agree with σ on all

constructive expressions of the form r or r.s, where r is a variable. By the form of

the reduced presentation, this determines σ′ completely.

4.6 Other Small-Step Rules

(i) 〈x, Δ, σ, α〉 → 〈σ([x]α), Δ, σ, α〉, σ([x]α) �= ⊥, x constructive

(ii) 〈x.y, Δ, σ, α〉 → 〈σ([x.y]α), Δ, σ, α〉, x.y constructive

(iii) 〈u = v, Δ, σ, α〉 → 〈1, Δ, σ, α〉, α � u = v

(iv) 〈u = v, Δ, σ, α〉 → 〈0, Δ, σ, α〉, α �� u = v

(v) 〈πy (vx | x ∈ domΓ), Δ, σ, α〉 → 〈vy, Δ, σ, α〉
(vi) 〈[gx | x ∈ domΓ](ιy v), Δ, σ, α〉 → 〈(gy v), Δ, σ, α〉
Defined rules are

(vii) 〈() ; e, Δ, σ, α〉 → 〈e, Δ, σ, α〉
(viii) 〈if 1 then d else e, Δ, σ, α〉 → 〈d, Δ, σ, α〉

D. Kozen / Electronic Notes in Theoretical Computer Science 286 (2012) 17–42 31

(ix) 〈if 0 then d else e, Δ, σ, α〉 → 〈e, Δ, σ, α〉
(x) 〈while b do e, Δ, σ, α〉 → 〈if b then (e ; while b do e) else (), Δ, σ, α〉
The proviso “σ([x]α) �= ⊥” in (i) effectively makes x irreducible when this property

holds. This is to allow Landin’s knot to form self-referential terms. Recall that

let rec x = d in e abbreviates let x = ⊥ in (x := d) ; e. The object ⊥ is meant for

this purpose only, and is not meant to be visible as the final value of a computation.

In a real implementation one would prevent ⊥ from becoming visible by imposing

syntactic guardedness conditions on the form of d, as done for example in OCaml,

or by raising a runtime error if the value of ⊥ is ever required in the evaluation of

d.

5 Applications

Nonces

A nonce is a creative object of type C(�). These are objects with no fields. They

correspond to the objects created by the new operator in the ν-calculus [6,26]. They

can be used as unique identifiers. We illustrate the use of nonces as variables in §6.

Records

A record with fields of type Γ is an object of type C(
∏

Γ). Note that this is

different from
∏

Γ. The difference is that if x1 = y1 and x2 = y2, then (x1, x2) =

(y1, y2), whereas there can be distinct creative objects x and y with x.1 = y.1 and

x.2 = y.2.

References

A reference is a record with a single field named !. The type of the reference is

C(
∏

Γ), where domΓ = {!}, and Γ(!) is the type of the datum. For example, an

integer reference, which would be represented by the type int ref in OCaml, would

have Γ(!) = �. The following OCaml expressions would translate to our language

as indicated:

OCaml our language

let x = ref 3 in . . . let x = new Γ(3) in . . .

!x x.!

x := 4 x.! := 4

Arrays

An integer array of length m is a record with fields {0, 1, . . . ,m − 1, length}.
This would have type C(

∏
Γ), where domΓ = {0, 1, . . . ,m−1, length}, Γ(i) = � for

0 ≤ i ≤ m− 1, and Γ(length) = �. The following Java expressions would translate

to our language as indicated:

D. Kozen / Electronic Notes in Theoretical Computer Science 286 (2012) 17–4232

Java our language

int[] x = new int[3]; let x = new Γ(0, . . . , 0, 3) in . . .

x.length x.length

x[0] x.0

x[2] = x[3]; x.2 := x.3

Objects

A creative type C(
∏

Γ) can be regarded as a class with fields whose types are

specified by Γ. If self is a variable of type Δ(self) = C(
∏

Γ), then other fields

x ∈ domΓ of the object can be accessed from within the object as self .x. To create

a new object of the class, we would say

let rec self = new Γ(v) in self (7)

The value of this expression is a new object in which the references to self in v

have been backpatched via Landin’s knot to refer to the object just created. If we

like, we can even have self ∈ domΓ with Γ(self) = C(
∏

Γ). The component of v

corresponding to self should be self . In order to have Γ(self) = C(
∏

Γ), the type

must be coinductive.

Note that the use of Landin’s knot is essential here. The traditional approach

involving fixpoint combinators does not work, as the new operator is not referentially

transparent.

Here is an example to demonstrate (7). Let domΓ = {self , f, n} with

Γ(self) = C(
∏

Γ) Γ(f) = �→ () Γ(n) = �.

Let us evaluate (7) with v = (self , λy.(self .n := y), 3). Substituting the definitions

of let rec and let, we have

let rec self = new Γ(self , λy.(self .n := y), 3) in self

= let self = ⊥ in (self := new Γ(self , λy.(self .n := y), 3)) ; self

= (λself .(self := new Γ(self , λy.(self .n := y), 3)) ; self) ⊥.

Evaluating this expression in a state with Δ, σ, and α would result in the state

〈(x := new Γ(x, λy.(x.n := y), 3)) ; x, Δ′, σ, α′〉

where x is fresh, Δ′ = Δ[x/C(
∏

Γ)], and α′ = α ∪ {(x,⊥)}. One more step of the

evaluation would yield

〈(x := v) ; x, Δ′′, σ′, α′′〉

D. Kozen / Electronic Notes in Theoretical Computer Science 286 (2012) 17–42 33

where v is fresh and

Δ′′ = Δ′[v/C(
∏

Γ)] σ′ = σ[v.f/λy.(x.n := y)][v.n/3] α′′ = α′ ∪ {(v.self , x)}.

Now performing the assignment leaves the expression x and changes the aliasing

relation to (α′′ − {(x,⊥)}) ∪ {(x, v)}. Applying Lemma 3.1 with x ∈ X and

collecting garbage, we are left with the final state

〈x, Δ[x/C(
∏

Γ)], σ[x.f/λy.(x.n := y)][x.n/3], α ∪ {(x.self , x)}〉.

To accommodate nominal classes in the sense of [25, §19.3], one could augment

the new construct to allow new C(e), where C = C(
∏

Γ) is a class declaration,

although we have not done so here.

6 Substitution and α-Conversion

In this section we demonstrate how syntactic equivalence of computational states

gives rise to indiscernability in the semantic domain. We show how to model λ-

terms semantically as elements of a coinductive datatype in which variables are

nonces. In the semantic domain, α-conversion is an idempotent operation; that is,

α-converting twice is the same as α-converting once.

A λ-term is either a λ-variable, an application, or an abstraction. An application

is a pair of λ-terms, an abstraction consists of a λ-variable (the parameter) and a

λ-term (the body), and λ-variables are nonces. We can thus model λ-terms with

the coinductive type

λTerm = λVar + λApp+ λAbs λ-coterms

λApp = λTerm× λTerm applications

λAbs = λVar × λTerm abstractions

λVar = C(�) λ-variables

The type also contains λ-coterms (infinitary λ-terms), although they do not figure

in our development.

The free variables of a λ-term are defined inductively by

FV(y) = {y} FV(t1 t2) = FV(t1) ∪ FV(t2) FV(λy.t0) = FV(t0)− {y}

They can be computed (for well-founded terms) by the following recursive program:

let rec isFreeIn (x : λVar) (t : λTerm) : � =

case t of
| ι0 y → y = x

| ι1 (t1, t2) → isFreeInx t1 ∨ isFreeInx t2
| ι2 (y, t0) → y �= x ∧ isFreeInx t0

Likewise, safe (capture-avoiding) substitution is defined as a fixpoint of a system

of equations. The result of substituting e for x in t is denoted t[x/e] and is defined

D. Kozen / Electronic Notes in Theoretical Computer Science 286 (2012) 17–4234

inductively by

y[x/e] =

{
e if y = x

y if y �= x

(t1 t2)[x/e] = (t1[x/e] t2[x/e])

(λy.t0)[x/e] =

⎧⎪⎨
⎪⎩
λy.t0 if y = x

λy.(t0[x/e]) if y �= x and y �∈ FV(e)

λz.(t0[y/z][x/e]) otherwise, where z �∈ {x} ∪ FV(t0) ∪ FV(e)

In the last rule, to satisfy the proviso z �∈ {x} ∪ FV(t0) ∪ FV(e), it suffices to take

z fresh. This leads to the following recursive program:

let rec subst (t : λTerm) (x : λVar) (e : λTerm) : λTerm =

case t of
| ι0 y → if y = x then e else t

| ι1 (t1, t2) → ι1 (subst t1 x e, subst t2 x e)
| ι2 (y, t0) → if y = x then t

else if ¬(isFreeIn y e) then ι2 (y, subst t0 x e)
else let z = new λVar in ι2 (z, subst (subst t0 y (ι0 z))x e)

If e is a variable w, this simplifies to

y[x/w] =

{
w if y = x

y if y �= x

(t1 t2)[x/w] = (t1[x/w]) (t2[x/w])

(λy.t0)[x/w] =

⎧⎪⎨
⎪⎩
λy.t0 if y = x

λy.(t0[x/w]) if y �= x and y �= w

λz.(t0[y/z][x/w]) if w = y �= x, where z �∈ {x,w} ∪ FV(t0).

let rec subst′ (t : λTerm) (x : λVar) (w : λVar) : λTerm =

case t of
| ι0 y → if y = x then ι0w else t

| ι1 (t1, t2) → ι1 (subst
′ t1 xw, subst′ t2 xw)

| ι2 (y, t0) → if y = x then t

else if y �= w then ι2 (y, subst
′ t0 xw)

else let z = new λVar in ι2 (z, subst
′ (subst′ t0 y z)xw)

Lemma 6.1 Modulo α-equivalence and garbage collection, the following big-step

D. Kozen / Electronic Notes in Theoretical Computer Science 286 (2012) 17–42 35

rules are sound:

α � x = y

〈subst′ (ι0 y)x v, Δ, σ, α〉 → 〈ι0 v, Δ, σ, α〉 (8)

α �� x = y

〈subst′ (ι0 y)x v, Δ, σ, α〉 → 〈ι0 y, Δ, σ, α〉 (9)

〈subst′ e0 x v, Δ, σ, α〉 → 〈v0, Δ, σ, α〉 〈subst′ e1 x v, Δ, σ, α〉 → 〈v1, Δ, σ, α〉
〈subst′ (ι1 (e0, e1))x v, Δ, σ, α〉 → 〈ι1 (v0, v1), Δ, σ, α〉

(10)

α � x = y

〈subst′ (ι2 (y, t))x v, Δ, σ, α〉 → 〈ι2 (y, t), Δ, σ, α〉 (11)

α �� x = y α �� y = v 〈subst′ t x v, Δ, σ, α〉 → 〈u, Δ, σ, α〉
〈subst′ (ι2 (y, t))x v, Δ, σ, α〉 → 〈ι2 (y, u), Δ, σ, α〉 (12)

Proof. We start with rule (8). Suppose α � y = x. Let

Δ′ = Δ[t′/λTerm][x′/λVar][v′/λVar] Δ′′ = Δ′[y′/λVar]
α′ = α ∪ {(x, x′), (v, v′)} α′′ = α′ ∪ {(y, y′)} (13)

σ′ = σ[t′/ι0 y],

where t′, x′, v′, y′ are fresh. We will first give the steps of the derivation, then give

a brief justification of each step afterwards.

〈subst′ (ι0 y)x v, Δ, σ, α〉
→ 〈(λtxw.[λy.if y = x then ι0w else ι0 y, . . .] t) (ι0 y)x v, Δ, σ, α〉 (14)

→ 〈[λy.if y = x′ then ι0 v
′ else ι0 y, . . .] t

′, Δ′, σ′, α′〉 (15)

→ 〈if y′ = x′ then ι0 v
′ else ι0 y

′, Δ′′, σ′, α′′〉 (16)

→ 〈ι0 v′, Δ′′, σ′, α′′〉 (17)

= 〈ι0 v, Δ′′, σ′, α′′〉 (18)

= 〈ι0 v, Δ, σ, α〉. (19)

For (14), we have just replaced subst′ with its definition. This is just an application

of small-step rule (i) of §4.6.
We obtain (15) from (14) by doing three successive function applications as

defined in §4.1. The first allocates a fresh constructive variable t′ of type λTerm,

substitutes it for t in the body of the function, and binds it to the argument ι0 y

in σ to get σ′. The second and last allocate fresh creative variables x′ and v′ of
type λVar, substitute them for x and w, respectively, in the body of the function,

and equate them to the arguments x and v, respectively, thereby extending α to α′.
The new type environment is Δ′.

We obtain (16) from (15) by rule (vi) of §4.6, the small-step rule for the case
statement. After lookup of t′, its value ι0 y is analyzed and the function corre-

sponding to index 0 in the tuple (the one shown) is dispatched. That function is

D. Kozen / Electronic Notes in Theoretical Computer Science 286 (2012) 17–4236

applied to y, which causes a fresh creative variable y′ of type λVar to be allocated,

substituted for y in the body, and equated with the argument y in α′ to get α′′.
The new type environment is Δ′′.

For (17), since α � y = x by assumption, we have α′′ � y′ = x′, therefore the

conditional test succeeds, resulting in the value ι0 v
′. Since α′′ � v = v′, (17) is

equivalent to (18). Finally, (19) is obtained by garbage collection, observing that

t′, x′, v′, and y′ are no longer accessible from ι0 v.

The proof of rule (9) is very similar, except that at step (17) we obtain ι0 y
′

instead of ι0 v
′ because α′′ �� y′ = x′. The proof of rule (11) is also very similar.

For rule (10), let

Δ′ = Δ[t′/λTerm][x′/λVar][v′/λVar] Δ′′ = Δ′[y′/λApp]
α′ = α ∪ {(x, x′), (v, v′)}

σ′ = σ[t′/ι1 (e0, e1)] σ′′ = σ′[y′/(e0, e1)],

where t′, x′, v′, y′ are fresh. By reasoning similar to the above, we have

〈subst′ (ι1 (e0, e1))x v, Δ, σ, α〉
→ 〈[. . . , λy.ι1 (subst′ (π0 y)x′ v′, subst′ (π1 y)x′ v′), . . .] t′, Δ′, σ′, α′〉
→ 〈ι1 (subst′ (π0 y′)x′ v′, subst′ (π1 y′)x′ v′), Δ′′, σ′′, α′〉
= 〈ι1 (subst′ (π0 y′)x v, subst′ (π1 y′)x v), Δ′′, σ′′, α′〉.

The last equation follows from the fact that α′ � x = x′ and α′ � v = v′. Now

evaluating π0 y
′ gives e0, and by the left-hand premise of (10), subst′ e0 x v reduces

to v0 in context. Similarly, by the right-hand premise, subst′ (π0 y′)x v reduces to

v1 in context. This leaves us with

〈ι1 (v0, v1), Δ′′, σ′, α′′〉 = 〈ι1 (v0, v1), Δ, σ, α〉,

where the right-hand side is obtained from the left by garbage collection.

Finally, for rule (12), let

Δ′ = Δ[t′/λTerm][x′/λVar][v′/λVar][y′/λAbs]
α′ = α ∪ {(x, x′), (v, v′)} σ′ = σ[t′/ι2 (y, t)][y′/(y, t)],

where t′, x′, v′, y′ are fresh. As above, we have

〈subst′ (ι2 (y, t))x v, Δ, σ, α〉
→ 〈ι2 (π0 y′, subst′ (π1 y′)x′ v′), Δ′, σ′, α′〉
→ 〈ι2 (y, subst′ t x′ v′), Δ′, σ′, α′〉
= 〈ι2 (y, subst′ t x v), Δ, σ, α〉 (20)

→ 〈ι2 (y, u), Δ, σ, α〉. (21)

with (20) from the fact that α′ � x = x′, α′ � v = v′, and garbage collection, and

(21) from the premise of (12) applied in context. �

D. Kozen / Electronic Notes in Theoretical Computer Science 286 (2012) 17–42 37

Lemma 6.2 Let Δ � e : λTerm and x, u, v ∈ domΔ. Assume that α �� y = u and

α �� y = v for y = x or any y occurring in e. The states

〈subst′ (subst′ e x u)u v, Δ, σ, α〉 〈subst′ e x v, Δ, σ, α〉

reduce to equivalent states modulo α-equivalence and garbage collection.

Proof. For the case e = ι0 y and α � y = x, by rule (8) both states reduce to

〈ι0 v, Δ, σ, α〉:

〈subst′ (subst′ (ι0 y)xu)u v, Δ, σ, α〉 → 〈subst′ (ι0 u)u v, Δ, σ, α〉
→ 〈ι0 v, Δ, σ, α〉

〈subst′ (ι0 y)x v, Δ, σ, α〉 → 〈ι0 v, Δ, σ, α〉.

If α �� y = x, by rule (9) both states reduce to 〈ι0 y, Δ, σ, α〉:

〈subst′ (subst′ (ι0 y)xu)u v, Δ, σ, α〉 → 〈subst′ (ι0 y)u v, Δ, σ, α〉
→ 〈ι0 y, Δ, σ, α〉

〈subst′ (ι0 y)x v, Δ, σ, α〉 → 〈ι0 y, Δ, σ, α〉.

For the case ι1 (e0, e1), we have

〈subst′ e0 xu, Δ, σ, α〉 → 〈e′0, Δ, σ, α〉 〈subst′ e′0 u v, Δ, σ, α〉 → 〈e′′0, Δ, σ, α〉
〈subst′ e1 xu, Δ, σ, α〉 → 〈e′1, Δ, σ, α〉 〈subst′ e′1 u v, Δ, σ, α〉 → 〈e′′1, Δ, σ, α〉,

thus

〈subst′ (subst′ e0 xu)u v, Δ, σ, α〉 → 〈subst′ e′0 u v, Δ, σ, α〉 → 〈e′′0, Δ, σ, α〉
〈subst′ (subst′ e1 xu)u v, Δ, σ, α〉 → 〈subst′ e′1 u v, Δ, σ, α〉 → 〈e′′1, Δ, σ, α〉.

By the induction hypothesis,

〈subst′ e0 x v, Δ, σ, α〉 → 〈e′′0, Δ, σ, α〉 〈subst′ e1 x v, Δ, σ, α〉 → 〈e′′1, Δ, σ, α〉.

By rule (10),

〈subst′ (ι1 (e0, e1))xu, Δ, σ, α〉 → 〈ι1 (e′0, e′1), Δ, σ, α〉
〈subst′ (ι1 (e′0, e′1))u v, Δ, σ, α〉 → 〈ι1 (e′′0, e′′1), Δ, σ, α〉,

therefore

〈subst′ (subst′ (ι1 (e0, e1))xu)u v, Δ, σ, α〉 → 〈subst′ (ι1 (e′0, e′1))u v, Δ, σ, α〉
→ 〈ι1 (e′′0, e′′1), Δ, σ, α〉,

〈subst′ (ι1 (e′0, e′1))x v, Δ, σ, α〉 → 〈ι1 (e′′0, e′′1), Δ, σ, α〉.

D. Kozen / Electronic Notes in Theoretical Computer Science 286 (2012) 17–4238

For the case ι2 (y, t), if α � y = x, by rule (11) and the fact that α �� u = w for

any w occurring in t, we have

〈subst′ (subst′ (ι2 (y, t))xu)u v, Δ, σ, α〉 → 〈subst′ (ι2 (y, t))u v, Δ, σ, α〉
→ 〈ι2 (y, t), Δ, σ, α〉

〈subst′ (ι2 (y, t))x v, Δ, σ, α〉 → 〈ι2 (y, t), Δ, σ, α〉.

If α �� y = x, we have α �� y = u and α �� y = v by the assumptions of the lemma,

and

〈subst′ t x u, Δ, σ, α〉 → 〈t′, Δ, σ, α〉 〈subst′ t′ u v, Δ, σ, α〉 → 〈t′′, Δ, σ, α〉,

thus

〈subst′ (subst′ t x u)u v, Δ, σ, α〉 → 〈subst′ t′ u v, Δ, σ, α〉 → 〈t′′, Δ, σ, α〉.

By the induction hypothesis,

〈subst′ t x v, Δ, σ, α〉 → 〈t′′, Δ, σ, α〉.

By rule (12),

〈subst′ (ι2 (y, t))xu, Δ, σ, α〉 → 〈ι2 (y, t′), Δ, σ, α〉
〈subst′ (ι2 (y, t′))u v, Δ, σ, α〉 → 〈ι2 (y, t′′), Δ, σ, α〉
〈subst′ (ι2 (y, t))x v, Δ, σ, α〉 → 〈ι2 (y, t′′), Δ, σ, α〉,

therefore

〈subst′ (subst′ (ι2 (y, t))xu)u v, Δ, σ, α〉 → 〈subst′ (ι2 (y, t′))u v, Δ, σ, α〉
→ 〈ι2 (y, t′′), Δ, σ, α〉.

�

To α-convert, we would map λx.e to λz.(e[x/z]), where z /∈ FV(e) − {x}. We

choose z /∈ FV(e) − {x} to avoid the capture of a free occurrences of z in e as a

result of the renaming. Usually we would simply choose a fresh z.

In our language, this would be implemented by a function

alpha : λAbs → λAbs

alpha = λt.let z = new λVar in (z, subst′ (π1 t) (π0 t) z),

or more informally,

alpha (x, e) = let z = new λVar in (z, subst′ e x z).

D. Kozen / Electronic Notes in Theoretical Computer Science 286 (2012) 17–42 39

The following theorem illustrates how syntactic equivalence of computational

states gives rise to indiscernability in the semantic domain. It states that α-

conversion is an idempotent operation; that is, performing it twice gives the same

result as performing it once.

Theorem 6.3 Modulo α-equivalence and garbage collection,

alpha (alpha (x, e)) = alpha (x, e).

Proof. In the evaluation of 〈alpha (x, e), Δ, σ, α〉, let t, u, v be fresh variables and

let

Δ′ = Δ[t/λAbs] σ′ = σ[t/(x, e)] α′ = α ∪ {(u, v)}.

Suppose

〈subst′ e x u, Δ[u/λVar], σ, α〉 → 〈e′, Δ[u/λVar], σ, α〉.

The evaluation yields the following sequence of states:

〈alpha (x, e), Δ, σ, α〉
→ 〈let z = new λVar in (z, subst′ (π1 t) (π0 t) z), Δ′, σ′, α〉
→ 〈(λz.(z, subst′ (π1 t) (π0 t) z)) v, Δ′[v/λVar], σ′, 〉
→ 〈(u, subst′ (π1 t) (π0 t)u), Δ′[v/λVar][u/λVar], σ′, α′〉
→ 〈(u, subst′ e x u), Δ′[v/λVar][u/λVar], σ′, α′〉
= 〈(u, subst′ e x u), Δ[u/λVar], σ, α〉 (22)

→ 〈(u, e′), Δ[u/λVar], σ, α〉.

Step (22) is by garbage collection. Using this,

〈alpha (alpha (x, e)), Δ, σ, α〉
= 〈alpha (u, e′), Δ[u/λVar], σ, α〉
→ 〈(v, subst′ e′ u v), Δ[u/λVar][v/λVar], σ, α〉 (23)

= 〈(v, subst′ e x v), Δ[u/λVar][v/λVar], σ, α〉 (24)

= 〈(v, subst′ e x v), Δ[v/λVar], σ, α〉 (25)

= 〈(u, subst′ e x u), Δ[u/λVar], σ, α〉 (26)

→ 〈(u, e′), Δ[u/λVar], σ, α〉.

Step (23) is by the same argument as (22). Step (24) is by Lemma 6.2. Steps (25)

and (26) are by garbage collection and renaming of a creative variable. �

7 Conclusion and Future Directions

We have shown how to model the creation of new indiscernible semantic objects

during program execution and how to incorporate this device in a higher-order

D. Kozen / Electronic Notes in Theoretical Computer Science 286 (2012) 17–4240

functional language with imperative and object-oriented features. Modeling inde-

scernables is desirable because it abstracts away from properties needed to allocate

objects from a preexisting set, thus allowing the representation of semantic objects

at a higher level of abstraction.

We have also shown that the explicit aliasing relation α and the congruence

closure algorithm are useful techniques in equational reasoning about higher-order

state. An interesting question for further study is the extent to which they can be

assimilated in equational deduction systems based on logical relations and bisimu-

lation [2,6,10,13,16,20,26,28].

References

[1] Abadi, M. and L. Cardelli, “A Theory of Objects,” Monographs in Computer Science, Springer-Verlag,
2002.

[2] Ahmed, A., D. Dreyer and A. Rossberg, State-dependent representation independence, in: Z. Shao and
B. C. Pierce, editors, Proc. 36th ACM Symp. Principles of Programming Languages (POPL’09) (2009),
pp. 340–353.

[3] Allen, S. F., An abstract semantics for atoms in Nuprl, Technical Report TR2006-2032, Cornell
University (2006).

[4] Almeida, M., N. Moreira and R. Reis, Testing equivalence of regular languages, J. Automata, Languages
and Combinatorics 15 (2010), pp. 7–25.

[5] Barendregt, H. P., “The Lambda Calculus: Its Syntax and Semantics,” North Holland, 1984.

[6] Benton, N. and V. Koutavas, A mechanized bisimulation for the ν-calculus, Technical Report MSR-
TR-2008-129, Microsoft Research (2007).

[7] Bickford, M. and R. Constable, Formal foundations of computer security, in: O. Grumberg, editor,
Formal Logical Methods for System Security and Correctness, IOS Press, 2008 pp. 29–52.

[8] Black, M., The identity of indiscernibles, Mind 61 (1952), pp. 153–164.

[9] Boolos, G., To be is to be a value of a variable (or to be some values of some variables), J. Philosophy
81 (1984), pp. 430–450.

[10] Dreyer, D., G. Neis, A. Rossberg and L. Birkedal, A relational modal logic for higher-order stateful
ADTs, in: M. V. Hermenegildo and J. Palsberg, editors, Proc. 37th ACM Symp. Principles of
Programming Languages (POPL’10) (2010), pp. 185–198.

[11] Gabbay, M. J. and A. Mathijssen, Nominal universal algebra: equational logic with names and binding,
J. Logic and Computation 19 (2009), pp. 1455–1508.

[12] Gabbay, M. J. and A. M. Pitts, A new approach to abstract syntax with variable binding, Formal
Aspects of Computing 13 (2002).

[13] Gibbons, J. and R. Hinze, Just do it: Simple monadic equational reasoning, in: O. Danvy, editor, 16th
Int. Conf. Functional Programming (ICFP’11) (2011), pp. 2–14.

[14] Hacking, I., The identity of indiscernibles, J. Philosophy 72 (1975), pp. 249–256.

[15] Hopcroft, J. E. and R. M. Karp, A linear algorithm for testing equivalence of finite automata, Technical
Report 71-114, University of California (1971).

[16] Hur, C.-K., D. Dreyer, G. Neis and V. Vafeiadis, The marriage of bisimulations and Kripke logical
relations, in: J. Field and M. Hicks, editors, Proc. 39th ACM Symp. Principles of Programming
Languages (POPL’12) (2012), pp. 59–72.

[17] Jeannin, J.-B., Capsules and closures, in: M. Mislove and J. Ouaknine, editors, Proc. 27th Conf. Math.
Found. Programming Semantics (MFPS XXVII) (2011), pp. 191–213.

D. Kozen / Electronic Notes in Theoretical Computer Science 286 (2012) 17–42 41

[18] Jeannin, J.-B. and D. Kozen, Capsules and separation, in: N. Dershowitz, editor, Proc. 27th ACM/IEEE
Symp. Logic in Computer Science (LICS’12) (2012), pp. 425–430.

[19] Jeannin, J.-B. and D. Kozen, Computing with capsules, in: M. Kutrib, N. Moreira and R. Reis, editors,
Proc. Conf. Descriptional Complexity of Formal Systems (DCFS 2012), Lecture Notes in Computer
Science 7386 (2012), pp. 1–19.

[20] Koutavas, V. and M. Wand, Small bisimulations for reasoning about higher-order imperative programs,
in: J. G. Morrisett and S. L. P. Jones, editors, Proc. 33rd ACM Symp. Principles of Programming
Languages (POPL’06) (2006), pp. 141–152.

[21] Kozen, D., Complexity of finitely presented algebras, in: Proc. 9th Symp. Theory of Comput., ACM,
1977, pp. 164–177.

[22] Kozen, D., Realization of coinductive types, in: M. Mislove and J. Ouaknine, editors, Proc. 27th Conf.
Math. Found. Programming Semantics (MFPS XXVII) (2011), pp. 148–155.

[23] Meyer, B., “Object-Oriented Software Construction,” Prentice Hall, 1997, 2nd edition.

[24] Nieuwenhuis, R. and A. Oliveras, Fast congruence closure and extensions, Information and
Computation 205 (2007), pp. 557–580.

[25] Pierce, B. C., “Types and Programming Languages,” MIT Press, 2002.

[26] Pitts, A. M. and I. Stark, Observable properties of higher order functions that dynamically create local
names, or: What’s new?, in: Mathematical Foundations of Computer Science: Proceedings of the 18th
International Symposium MFCS ’93, number 711 in Lecture Notes in Computer Science (1993), pp.
122–141.

[27] Pitts, A. M. and I. Stark, Operational reasoning for functions with local state, in: A. Gordon and
A. Pitts, editors, Higher Order Operational Techniques in Semantics, Publications of the Newton
Institute, Cambridge University Press, 1998 pp. 227–273.

[28] Vytiniotis, D. and V. Koutavas, Relating step-indexed logical relations and bisimulations, Technical
Report MSR-TR-2009-25, Microsoft Research (2009).

D. Kozen / Electronic Notes in Theoretical Computer Science 286 (2012) 17–4242

	Introduction
	Capsules
	Syntax
	Semantics

	Syntax
	Types
	Expressions
	Aliasing Relations
	Equational Reasoning
	Program States
	Garbage Collection

	Operational Semantics
	Function Application
	Creation
	Assignment to Constructive Expressions
	Assignment to Creative Variables
	Assignment to Creative Fields
	Other Small-Step Rules

	Applications
	Substitution and -Conversion
	Conclusion and Future Directions
	References

