114 research outputs found

    Π‘ΠΈΠ½Ρ‚Π΅Π· Ρ‚Π° ΠΎΡ†Ρ–Π½ΠΊΠ° активності адамантиловмісних Ρ‚Ρ–Π°Π·ΠΎΠ»Ρ–Ρ”Π²ΠΈΡ… Ρ–Π½Π³Ρ–Π±Ρ–Ρ‚ΠΎΡ€Ρ–Π² бутирилхолінСстСрази

    Get PDF
    Cholinesterase inhibitors can be used for treatment of neuropsychiatric symptoms and functional impairments in neurodegenerative pathologies such as Alzheimer’s and Parkinson’s diseases.Aim. To synthesize and assess the inhibitory activity of adamantyl-containing 5-substituted N-benzyl and N-phenacylthiazolium salts against butyrylcholinesterase and acetylcholinesterase.Results and discussion. The synthesis of 3-aroylmethyl- and 3-arylmethyl-5-(2-acyloxyethyl)-4-methylthiazolium salts included preparation of 5-acyloxyethyl thiazole derivatives by the reaction of 5-(2-hydroxyethyl)-4-methyl-1,3-thiazole with the corresponding adamantoyl- or adamantylacetyl chlorides. The derivatives of 5-acyloxyethyl thiazole were quaternized in the reaction with benzyl or phenacyl halides. The studies in vitro have shown that the compounds synthesized inhibit butyrylcholinesterase with IC50 values in the micromolar range. Some of them exhibited selectivity over acetylcholinesterase. The molecular docking was performed for understanding the mechanisms of the enzyme-inhibitor complex formation.Experimental part. The synthesis of the intermediate and target compounds was carried out by the classical methods. The structures of compounds were proven by NMR 1H-spectroscopy and elemental analysis. The methods of enzymatic kinetics were used for determination of the inhibitory effects of the compounds synthesized. Calculations by molecular docking were carried out using Autodock 4.2 program.Conclusions. 3-Aroylmethyl- and 3-arylmethyl-5-(2-acyloxyethyl)-4-methylthiazolium salts with adamantylcontaining substituents in position 5 can selectively inhibit butyrylcholinesterase compared to their effect on acetylcholinesterase.Π˜Π·Π²Π΅ΡΡ‚Π½ΠΎ, Ρ‡Ρ‚ΠΎ ΠΈΠ½Π³ΠΈΠ±ΠΈΡ‚ΠΎΡ€Ρ‹ холинэстСраз ΠΌΠΎΠ³ΡƒΡ‚ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Ρ‚ΡŒΡΡ для лСчСния Π½Π΅ΠΉΡ€ΠΎΠ΄Π΅Π³Π΅Π½Π΅Ρ€Π°Ρ‚ΠΈΠ²Π½Ρ‹Ρ… Π·Π°Π±ΠΎΠ»Π΅Π²Π°Π½ΠΈΠΉ, Ρ‚Π°ΠΊΠΈΡ… ΠΊΠ°ΠΊ болСзнь ΠΠ»ΡŒΡ†Π³Π΅ΠΉΠΌΠ΅Ρ€Π° ΠΈ болСзнь ΠŸΠ°Ρ€ΠΊΠΈΠ½ΡΠΎΠ½Π°.ЦСль Ρ€Π°Π±ΠΎΡ‚Ρ‹. ЦСлью Ρ€Π°Π±ΠΎΡ‚Ρ‹ Π±Ρ‹Π» синтСз ΠΈ ΠΎΡ†Π΅Π½ΠΊΠ° активности адамантилсодСрТащих 5-Π·Π°ΠΌΠ΅Ρ‰Π΅Π½Π½Ρ‹Ρ… N-Π±Π΅Π½Π·ΠΈΠ»ΡŒΠ½Ρ‹Ρ… ΠΈ N-Ρ„Π΅Π½Π°Ρ†ΠΈΠ»ΡŒΠ½Ρ‹Ρ… солСй тиазолия ΠΊΠ°ΠΊ ΠΈΠ½Π³ΠΈΠ±ΠΈΡ‚ΠΎΡ€ΠΎΠ² бутирилхолинэстСразы ΠΈ ацСтилхолинэстСразы.Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ ΠΈ ΠΈΡ… обсуТдСниС. Π‘ΠΈΠ½Ρ‚Π΅Π·Ρ‹ 3-Π°Ρ€ΠΎΠΈΠ»ΠΌΠ΅Ρ‚ΠΈΠ»- ΠΈ 3-Π°Ρ€ΠΈΠ»ΠΌΠ΅Ρ‚ΠΈΠ»-5-(2-ацилоксиэтил)-4-ΠΌΠ΅Ρ‚ΠΈΠ»Ρ‚ΠΈΠ°Π·ΠΎΠ»ΠΈΠ΅Π²Ρ‹Ρ… солСй Π²ΠΊΠ»ΡŽΡ‡Π°Π»ΠΈ ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½ΠΈΠ΅ 5-Π°Ρ†ΠΈΠ»ΠΎΠΊΡΠΈΡΡ‚ΠΈΠ»ΡŒΠ½Ρ‹Ρ… ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Ρ‹Ρ… Ρ‚ΠΈΠ°Π·ΠΎΠ»Π° ΠΏΡ€ΠΈ взаимодСйствии 5-(2-гидроксиэтил)-4-ΠΌΠ΅Ρ‚ΠΈΠ»-1,3-Ρ‚ΠΈΠ°Π·ΠΎΠ»Π° с ΡΠΎΠΎΡ‚Π²Π΅Ρ‚ΡΡ‚Π²ΡƒΡŽΡ‰ΠΈΠΌΠΈ Π°Π΄Π°ΠΌΠ°Π½Ρ‚ΠΎΠΈΠ»- ΠΈΠ»ΠΈ Π°Π΄Π°ΠΌΠ°Π½Ρ‚ΠΈΠ»Π°Ρ†Π΅Ρ‚ΠΈΠ»Ρ…Π»ΠΎΡ€ΠΈΠ΄Π°ΠΌΠΈ, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ Π² дальнСйшСм Π±Ρ‹Π»ΠΈ ΠΊΠ²Π°Ρ‚Π΅Ρ€Π½ΠΈΠ·ΠΈΡ€ΠΎΠ²Π°Π½Ρ‹ Π² Ρ€Π΅Π°ΠΊΡ†ΠΈΠΈ с Π±Π΅Π½Π·ΠΈΠ»- ΠΈΠ»ΠΈ Ρ„Π΅Π½Π°Ρ†ΠΈΠ»Π³Π°Π»ΠΎΠ³Π΅Π½ΠΈΠ΄Π°ΠΌΠΈ.Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ исслСдования in vitro ΠΏΠΎΠΊΠ°Π·Π°Π»ΠΈ, Ρ‡Ρ‚ΠΎ синтСзированныС соСдинСния ΠΈΠ½Π³ΠΈΠ±ΠΈΡ€ΡƒΡŽΡ‚ бутирилхолинэстСразу со значСниями IC50 Π² микромолярном Π΄ΠΈΠ°ΠΏΠ°Π·ΠΎΠ½Π΅. НСкоторыС ΠΈΠ· Π½ΠΈΡ… дСмонстрировали ΡΠ΅Π»Π΅ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ дСйствия ΠΏΠΎ ΡΡ€Π°Π²Π½Π΅Π½ΠΈΡŽ с ΠΈΠ½Π³ΠΈΠ±ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ ацСтилхолинэстСразы. Для выяснСния ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌΠΎΠ² формирования комплСксов ΠΈΠ½Π³ΠΈΠ±ΠΈΡ‚ΠΎΡ€ΠΎΠ² с бутирилхолинэстСразой Π±Ρ‹Π» ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅Π½ молСкулярный Π΄ΠΎΠΊΠΈΠ½Π³. Β  Β  Β  Β  Β  Β  Β  Β  Β  Β  Β  Β  Β  Β  Β  Β  Β  Β  Β  Β  Π­ΠΊΡΠΏΠ΅Ρ€ΠΈΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½Π°Ρ Ρ‡Π°ΡΡ‚ΡŒ. Π‘ΠΈΠ½Ρ‚Π΅Π· ΠΏΡ€ΠΎΠΌΠ΅ΠΆΡƒΡ‚ΠΎΡ‡Π½Ρ‹Ρ… ΠΈ Ρ†Π΅Π»Π΅Π²Ρ‹Ρ… соСдинСний Π±Ρ‹Π» Π²Ρ‹ΠΏΠΎΠ»Π½Π΅Π½ Ρ‚Ρ€Π°Π΄ΠΈΡ†ΠΈΠΎΠ½Π½Ρ‹ΠΌΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄Π°ΠΌΠΈ. Π‘Ρ‚Ρ€ΡƒΠΊΡ‚ΡƒΡ€Ρ‹ соСдинСний Π΄ΠΎΠΊΠ°Π·Π°Π½Ρ‹ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ ЯМР 1Н-спСктроскопии ΠΈ Π΄Π°Π½Π½Ρ‹ΠΌΠΈ элСмСнтного Π°Π½Π°Π»ΠΈΠ·Π°. Для опрСдСлСния ΠΈΠ½Π³ΠΈΠ±ΠΈΡ€ΡƒΡŽΡ‰Π΅Π³ΠΎ влияния синтСзированных соСдинСний Π½Π° Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ бутирилхолинэстСразы ΠΈ ацСтилхолинэстСразы использовали ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹ Ρ„Π΅Ρ€ΠΌΠ΅Π½Ρ‚Π°Ρ‚ΠΈΠ²Π½ΠΎΠΉ ΠΊΠΈΠ½Π΅Ρ‚ΠΈΠΊΠΈ. Для расчСтов ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ молСкулярного Π΄ΠΎΠΊΠΈΠ½Π³Π° использовали ΠΏΡ€ΠΎΠ³Ρ€Π°ΠΌΡƒ Autodock 4.2. Β  Β  Β  Β  Β  Β  Β  Β  Β  Β  Β  Β  Β  Β  Β  Β  Β  Β  Β  Β  Β  Π’Ρ‹Π²ΠΎΠ΄Ρ‹. 3-АроилмСтил- ΠΈ 3-Π°Ρ€ΠΈΠ»ΠΌΠ΅Ρ‚ΠΈΠ»-5-(2-ацилоксиэтил)-4-ΠΌΠ΅Ρ‚ΠΈΠ»Ρ‚ΠΈΠ°Π·ΠΎΠ»ΠΈΠ΅Π²Ρ‹Π΅ соли с адамантилсодСрТащими замСститСлями Π² ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠΈ 5 ΠΌΠΎΠ³ΡƒΡ‚ сСлСктивно ΠΈΠ½Π³ΠΈΠ±ΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ бутирилхолинэстСразу ΠΏΠΎ ΡΡ€Π°Π²Π½Π΅Π½ΠΈΡŽ с ΠΈΡ… влияниСм Π½Π° ацСтилхолинэстСразу.Π’Ρ–Π΄ΠΎΠΌΠΎ, Ρ‰ΠΎ Ρ–Π½Π³Ρ–Π±Ρ–Ρ‚ΠΎΡ€ΠΈ холінСстСраз ΠΌΠΎΠΆΡƒΡ‚ΡŒ Π²ΠΈΠΊΠΎΡ€ΠΈΡΡ‚ΠΎΠ²ΡƒΠ²Π°Ρ‚ΠΈΡΡŒ для лікування Π½Π΅ΠΉΡ€ΠΎΠ΄Π΅Π³Π΅Π½Π΅Ρ€Π°Ρ‚ΠΈΠ²Π½ΠΈΡ… Π·Π°Ρ…Π²ΠΎΡ€ΡŽΠ²Π°Π½ΡŒ, Ρ‚Π°ΠΊΠΈΡ… як Ρ…Π²ΠΎΡ€ΠΎΠ±Π° ΠΠ»ΡŒΡ†Π³Π΅ΠΉΠΌΠ΅Ρ€Π° Ρ– Ρ…Π²ΠΎΡ€ΠΎΠ±Π° ΠŸΠ°Ρ€ΠΊΡ–Π½ΡΠΎΠ½Π°.ΠœΠ΅Ρ‚Π° Ρ€ΠΎΠ±ΠΎΡ‚ΠΈ. ΠœΠ΅Ρ‚ΠΎΡŽ Ρ€ΠΎΠ±ΠΎΡ‚ΠΈ Π±ΡƒΠ² синтСз Ρ‚Π° ΠΎΡ†Ρ–Π½ΠΊΠ° активності адамантиловмісних 5-Π·Π°ΠΌΡ–Ρ‰Π΅Π½ΠΈΡ… N-Π±Π΅Π½Π·ΠΈΠ»ΡŒΠ½ΠΈΡ… Ρ‚Π° N-Ρ„Π΅Π½Π°Ρ†ΠΈΠ»ΡŒΠ½ΠΈΡ… солСй Ρ‚Ρ–Π°Π·ΠΎΠ»Ρ–ΡŽ як Ρ–Π½Π³Ρ–Π±Ρ–Ρ‚ΠΎΡ€Ρ–Π² бутирилхолінСстСрази Ρ– ацСтилхолінСстСрази.Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ΠΈ Ρ‚Π° Ρ—Ρ… обговорСння. Π‘ΠΈΠ½Ρ‚Π΅Π·ΠΈ 3-Π°Ρ€ΠΎΡ—Π»ΠΌΠ΅Ρ‚ΠΈΠ»- Ρ– 3-Π°Ρ€ΠΈΠ»ΠΌΠ΅Ρ‚ΠΈΠ»-5-(2-ацилоксіСтил)-4-ΠΌΠ΅Ρ‚ΠΈΠ»Ρ‚Ρ–Π°Π·ΠΎΠ»Ρ–Ρ”Π²ΠΈΡ… солСй Π²ΠΊΠ»ΡŽΡ‡Π°Π»ΠΈ одСрТання 5-Π°Ρ†ΠΈΠ»ΠΎΠΊΡΡ–Π΅Ρ‚ΠΈΠ»ΡŒΠ½ΠΈΡ… ΠΏΠΎΡ…Ρ–Π΄Π½ΠΈΡ… Ρ‚Ρ–Π°Π·ΠΎΠ»Ρƒ ΠΏΡ€ΠΈ Π²Π·Π°Ρ”ΠΌΠΎΠ΄Ρ–Ρ— 5-(2-гідроксіСтил)-4-ΠΌΠ΅Ρ‚ΠΈΠ»-1,3-Ρ‚Ρ–Π°Π·ΠΎΠ»Ρƒ Π· Π²Ρ–Π΄ΠΏΠΎΠ²Ρ–Π΄Π½ΠΈΠΌΠΈ Π°Π΄Π°ΠΌΠ°Π½Ρ‚ΠΎΡ—Π»- Ρ‡ΠΈ Π°Π΄Π°ΠΌΠ°Π½Ρ‚ΠΈΠ»Π°Ρ†Π΅Ρ‚ΠΈΠ»Ρ…Π»ΠΎΡ€ΠΈΠ΄Π°ΠΌΠΈ, які Π½Π°Π΄Π°Π»Ρ– ΠΊΠ²Π°Ρ‚Π΅Ρ€Π½Ρ–Π·ΡƒΠ²Π°Π»ΠΈ Π² Ρ€Π΅Π°ΠΊΡ†Ρ–Ρ— Π· Π±Π΅Π½Π·ΠΈΠ»- Π°Π±ΠΎ Ρ„Π΅Π½Π°Ρ†ΠΈΠ»Π³Π°Π»ΠΎΠ³Π΅Π½Ρ–Π΄Π°ΠΌΠΈ. Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ΠΈ дослідТСння in vitro ΠΏΠΎΠΊΠ°Π·Π°Π»ΠΈ, Ρ‰ΠΎ синтСзовані сполуки Ρ–Π½Π³Ρ–Π±ΡƒΡŽΡ‚ΡŒ бутирилхолінСстСразу Π·Ρ– значСннями Π†Π‘50 Π² мікромолярному Π΄Ρ–Π°ΠΏΠ°Π·ΠΎΠ½Ρ–. ДСякі Π· Π½ΠΈΡ… дСмонстрували ΡΠ΅Π»Π΅ΠΊΡ‚ΠΈΠ²Π½Ρ–ΡΡ‚ΡŒ Π΄Ρ–Ρ— Ρƒ порівнянні Π· інгібуванням ацСтилхолінСстСрази. Для з’ясування ΠΌΠ΅Ρ…Π°Π½Ρ–Π·ΠΌΡ–Π² формування комплСксів Ρ–Π½Π³Ρ–Π±Ρ–Ρ‚ΠΎΡ€Ρ–Π² Π· Π±ΡƒΡ‚ΠΈΡ€ΠΈΠ»Ρ…ΠΎΠ»Ρ–Π½Π΅ΡΡ‚Π΅Ρ€Π°Π·ΠΎΡŽ Π±ΡƒΠ»ΠΎ ΠΏΡ€ΠΎΠ²Π΅Π΄Π΅Π½ΠΎ молСкулярний Π΄ΠΎΠΊΡ–Π½Π³. Π•ΠΊΡΠΏΠ΅Ρ€ΠΈΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½Π° частина. Π‘ΠΈΠ½Ρ‚Π΅Π·ΠΈ ΠΏΡ€ΠΎΠΌΡ–ΠΆΠ½ΠΈΡ… Ρ– Ρ†Ρ–Π»ΡŒΠΎΠ²ΠΈΡ… сполук Π±ΡƒΠ»ΠΈ Π²ΠΈΠΊΠΎΠ½Π°Π½Ρ– класичними способами.Π‘Ρ‚Ρ€ΡƒΠΊΡ‚ΡƒΡ€ΠΈ сполук ΠΏΡ–Π΄Ρ‚Π²Π΅Ρ€Π΄ΠΆΠ΅Π½ΠΎ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ ЯМР 1Н-спСктроскопії Ρ‚Π° Π΄Π°Π½ΠΈΠΌΠΈ Π΅Π»Π΅ΠΌΠ΅Π½Ρ‚Π½ΠΎΠ³ΠΎ Π°Π½Π°Π»Ρ–Π·Ρƒ. Для визначСння Ρ–Π½Π³Ρ–Π±ΡƒΠ²Π°Π»ΡŒΠ½ΠΎΠ³ΠΎ Π²ΠΏΠ»ΠΈΠ²Ρƒ синтСзованих сполук Π½Π° Π°ΠΊΡ‚ΠΈΠ²Π½Ρ–ΡΡ‚ΡŒ бутирилхолінСстСрази Ρ‚Π° ацСтилхолінСстСрази Π±ΡƒΠ»ΠΈ застосовані ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈ Ρ„Π΅Ρ€ΠΌΠ΅Π½Ρ‚Π°Ρ‚ΠΈΠ²Π½ΠΎΡ— ΠΊΡ–Π½Π΅Ρ‚ΠΈΠΊΠΈ. Для Ρ€ΠΎΠ·Ρ€Π°Ρ…ΡƒΠ½ΠΊΡ–Π² ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ молСкулярного Π΄ΠΎΠΊΡ–Π½Π³Ρƒ використано ΠΏΡ€ΠΎΠ³Ρ€Π°ΠΌΡƒ Autodock 4.2.Висновки. 3-АроїлмСтил- Ρ– 3-Π°Ρ€ΠΈΠ»ΠΌΠ΅Ρ‚ΠΈΠ»-5-(2-ацилоксіСтил)-4-ΠΌΠ΅Ρ‚ΠΈΠ»Ρ‚Ρ–Π°Π·ΠΎΠ»Ρ–Ρ”Π²Ρ– солі Π· адамантиловмісними замісниками Π² ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½Π½Ρ– 5 ΠΌΠΎΠΆΡƒΡ‚ΡŒ сСлСктивно Ρ–Π½Π³Ρ–Π±ΡƒΠ²Π°Ρ‚ΠΈ бутирилхолінСстСразу Ρƒ порівнянні Π· Ρ—Ρ… Π²ΠΏΠ»ΠΈΠ²ΠΎΠΌ Π½Π° ацСтилхолінСстСразу

    Estimating Mutual Information

    Get PDF
    We present two classes of improved estimators for mutual information M(X,Y)M(X,Y), from samples of random points distributed according to some joint probability density ΞΌ(x,y)\mu(x,y). In contrast to conventional estimators based on binnings, they are based on entropy estimates from kk-nearest neighbour distances. This means that they are data efficient (with k=1k=1 we resolve structures down to the smallest possible scales), adaptive (the resolution is higher where data are more numerous), and have minimal bias. Indeed, the bias of the underlying entropy estimates is mainly due to non-uniformity of the density at the smallest resolved scale, giving typically systematic errors which scale as functions of k/Nk/N for NN points. Numerically, we find that both families become {\it exact} for independent distributions, i.e. the estimator M^(X,Y)\hat M(X,Y) vanishes (up to statistical fluctuations) if ΞΌ(x,y)=ΞΌ(x)ΞΌ(y)\mu(x,y) = \mu(x) \mu(y). This holds for all tested marginal distributions and for all dimensions of xx and yy. In addition, we give estimators for redundancies between more than 2 random variables. We compare our algorithms in detail with existing algorithms. Finally, we demonstrate the usefulness of our estimators for assessing the actual independence of components obtained from independent component analysis (ICA), for improving ICA, and for estimating the reliability of blind source separation.Comment: 16 pages, including 18 figure

    Least Dependent Component Analysis Based on Mutual Information

    Get PDF
    We propose to use precise estimators of mutual information (MI) to find least dependent components in a linearly mixed signal. On the one hand this seems to lead to better blind source separation than with any other presently available algorithm. On the other hand it has the advantage, compared to other implementations of `independent' component analysis (ICA) some of which are based on crude approximations for MI, that the numerical values of the MI can be used for: (i) estimating residual dependencies between the output components; (ii) estimating the reliability of the output, by comparing the pairwise MIs with those of re-mixed components; (iii) clustering the output according to the residual interdependencies. For the MI estimator we use a recently proposed k-nearest neighbor based algorithm. For time sequences we combine this with delay embedding, in order to take into account non-trivial time correlations. After several tests with artificial data, we apply the resulting MILCA (Mutual Information based Least dependent Component Analysis) algorithm to a real-world dataset, the ECG of a pregnant woman. The software implementation of the MILCA algorithm is freely available at http://www.fz-juelich.de/nic/cs/softwareComment: 18 pages, 20 figures, Phys. Rev. E (in press

    Perturbed Rotations of a Rigid Body Close to the Lagrange Case under the Action of Unsteady Perturbation Torques

    Get PDF
    Perturbed rotations of a rigid body close to the Lagrange case under the action of perturbation torques slowly varying in time are investigated. Conditions are presented for the possibility of averaging the equations of motion with respect to the nutation angle and the averaged system of equations of motion is obtained. In the case of the rotational motion of the body in the linear-dissipative medium the numerical integration of the averaged system of equations is conducted

    On directed information theory and Granger causality graphs

    Full text link
    Directed information theory deals with communication channels with feedback. When applied to networks, a natural extension based on causal conditioning is needed. We show here that measures built from directed information theory in networks can be used to assess Granger causality graphs of stochastic processes. We show that directed information theory includes measures such as the transfer entropy, and that it is the adequate information theoretic framework needed for neuroscience applications, such as connectivity inference problems.Comment: accepted for publications, Journal of Computational Neuroscienc

    5-YEAR SURVIVAL OF PATIENTS WITH STAGE II UTERINE CANCER DEPENDING ON MORPHOLOGIC FEATURES OF TUMOR

    Get PDF
    Retrospective data of treatment results of 109 patients with rarely observed stage II uterine cancer, admitted to N.N. Blokhin Russian Cancer Research Center from 1980 to 2000 is analyzed. Correlation of overall 5-year survival rates of stage IIA and IIB uterine can- cer patients with a number of tumor morphologic features is studied. The influence of some non-elucidated morphologic features of stage IIA and IIB uterine cancer such as the degree of cellular anaplasia, the depth of tumor invasion into the uterine neck, lymho- vascular invasion into the myometrium and uterine neck, microscopic vessels density in the area of the most extensive invasion, the presence of necrotic areas in the tumor tissue on long-term treatment results are analyzed

    Π†Π½Π³Ρ–Π±Ρ–Ρ‚ΠΎΡ€ΠΈ ацСтилхолінСстСрази Π· Ρ‚Ρ–Π°Π·ΠΎΠ»Ρ–Ρ”Π²ΠΈΠΌ скафолдом: структурні особливості Ρ– способи зв’язування

    Get PDF
    Aim. To assess the structural features of substituents and the role of a thiazolium scaffold in mechanisms of acetylcholinesterase inhibition by thiazolium salts.Results and discussion. On the basis of activities of model compounds at pH 6.5 and pH 8.0 and the results of molecular docking the binding modes of quaternized derivatives of 5-(2-hydroxyethyl)-4-methylthiazole with different substituents in position 3 and 5 were analyzed. The presence of (N)3-benzyl substituent provides the inhibitor fixation in the catalytic anionic site, whereas acyl fragments of substituents in position 5 are situated in the peripheral anionic site. Logarithms of Π†Π‘50 values of the thiazolium inhibitors, except for the compounds containing O-acyl carbocyclic groups, linearly depend on the calculated docking energies in case of a thiazolium, ion as well as a neutral tetrahedral intermediate of the thiazolium ring opening.Experimental part. Thiazolium salts were synthesized by the known methods. The activity of acetylcholinesterase was studied by Ellman’s method. Molecular docking to the active site of acetylcholinesterase was performed using an AutoDock 4.2 program.Conclusions. Structural fragments of substituents in positions 3 and 5 of the heterocyclic scaffold provide binding of the inhibitor in the catalytic anionic site and the peripheral anionic site of acetylcholinesterase, respectively. The heterocyclic scaffold can be bound to the enzyme as a thiazolium ion or a neutral tetrahedralintermediate of the ring opening reaction.ЦСлью Ρ€Π°Π±ΠΎΡ‚Ρ‹ Π±Ρ‹Π»Π° ΠΎΡ†Π΅Π½ΠΊΠ° структурных особСнностСй замСститСлСй ΠΈ Ρ€ΠΎΠ»ΠΈ Ρ‚ΠΈΠ°Π·ΠΎΠ»ΠΈΠ΅Π²ΠΎΠ³ΠΎ скаффолда Π² ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌΠ°Ρ… ингибирования ацСтилхолинэстСразы солями тиазолия.Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ ΠΈ ΠΈΡ… обсуТдСниС. На основании активности ΠΏΡ€ΠΈ рН 6,5 ΠΈ рН 8,0 ΠΈ согласно Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ΠΎΠ² молСкулярного Π΄ΠΎΠΊΠΈΠ½Π³Π° ΠΏΡ€ΠΎΠ°Π½Π°Π»ΠΈΠ·ΠΈΡ€ΠΎΠ²Π°Π½Ρ‹ способы связывания ацСтилхолинэстСразой ΠΊΠ²Π°Ρ‚Π΅Ρ€Π½ΠΈΠ·ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹Ρ… ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Ρ‹Ρ… 5-(2-гидроксиэтил)-4-ΠΌΠ΅Ρ‚ΠΈΠ»Ρ‚ΠΈΠ°Π·ΠΎΠ»Π° с Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹ΠΌΠΈ замСститСлями Π² полоТСниях 3 ΠΈ 5. НаличиС (N)3-бСнзильного замСститСля обСспСчиваСт Π»ΡƒΡ‡ΡˆΠ΅Π΅ Π·Π°ΠΊΡ€Π΅ΠΏΠ»Π΅Π½ΠΈΠ΅ ΠΈΠ½Π³ΠΈΠ±ΠΈΡ‚ΠΎΡ€Π° Π² каталитичСском Π°Π½ΠΈΠΎΠ½Π½ΠΎΠΌ сайтС, Ρ‚ΠΎΠ³Π΄Π° ΠΊΠ°ΠΊ Π°Ρ†ΠΈΠ»ΡŒΠ½Ρ‹Π΅ Ρ„Ρ€Π°Π³ΠΌΠ΅Π½Ρ‚Ρ‹ замСститСлСй Π² ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠΈ 5 Ρ€Π°ΡΠΏΠΎΠ»Π°Π³Π°ΡŽΡ‚ΡΡ Π² области пСрифСричСского Π°Π½ΠΈΠΎΠ½Π½ΠΎΠ³ΠΎ сайта. Π›ΠΎΠ³Π°Ρ€ΠΈΡ„ΠΌΡ‹ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ Π†Π‘50, Π·Π° ΠΈΡΠΊΠ»ΡŽΡ‡Π΅Π½ΠΈΠ΅ΠΌ соСдинСний с О-Π°Ρ†ΠΈΠ»ΡŒΠ½Ρ‹ΠΌΠΈ карбоцикличСскими Π³Ρ€ΡƒΠΏΠΏΠ°ΠΌΠΈ, Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎ зависят ΠΎΡ‚ рассчитанных энСргий Π΄ΠΎΠΊΠΈΠ½Π³Π° ΠΊΠ°ΠΊ Π² случаС Ρ‚ΠΈΠ°Π·ΠΎΠ»ΠΈΠ΅Π²ΠΎΠ³ΠΎ ΠΈΠΎΠ½Π°, Ρ‚Π°ΠΊ ΠΈ Π² случаС Π½Π΅ΠΉΡ‚Ρ€Π°Π»ΡŒΠ½ΠΎΠ³ΠΎ тСтраэдричСского ΠΈΠ½Ρ‚Π΅Ρ€ΠΌΠ΅Π΄ΠΈΠ°Ρ‚Π° раскрытия Ρ‚ΠΈΠ°Π·ΠΎΠ»ΠΈΠ΅Π²ΠΎΠ³ΠΎ Ρ†ΠΈΠΊΠ»Π°.Π­ΠΊΡΠΏΠ΅Ρ€ΠΈΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½Π°Ρ Ρ‡Π°ΡΡ‚ΡŒ. Π‘ΠΎΠ»ΠΈ тиазолия синтСзированы извСстными ΠΌΠ΅Ρ‚ΠΎΠ΄Π°ΠΌΠΈ. ΠΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ ацСтилхолинэстСразы опрСдСляли ΠΏΠΎ ΠΌΠ΅Ρ‚ΠΎΠ΄Ρƒ Π­Π»Π»ΠΌΠ°Π½Π°. ΠœΠΎΠ»Π΅ΠΊΡƒΠ»ΡΡ€Π½Ρ‹ΠΉ Π΄ΠΎΠΊΠΈΠ½Π³ Π² ΠΎΠ±Π»Π°ΡΡ‚ΡŒ Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΠ³ΠΎ Ρ†Π΅Π½Ρ‚Ρ€Π° ацСтилхолинэстСразы Π²Ρ‹ΠΏΠΎΠ»Π½Π΅Π½ с использованиСм ΠΏΡ€ΠΎΠ³Ρ€Π°ΠΌΠΌΡ‹ AutoDock 4.2.Π’Ρ‹Π²ΠΎΠ΄Ρ‹. Π‘Ρ‚Ρ€ΡƒΠΊΡ‚ΡƒΡ€Π½Ρ‹Π΅ Ρ„Ρ€Π°Π³ΠΌΠ΅Π½Ρ‚Ρ‹ замСститСлСй Π² полоТСниях 3 ΠΈ 5 гСтСроцикличСского скаффолда ΠΎΠ±Π΅ΡΠΏΠ΅Ρ‡ΠΈΠ²Π°ΡŽΡ‚ связываниС ΠΈΠ½Π³ΠΈΠ±ΠΈΡ‚ΠΎΡ€Π° Π² области каталитичСского ΠΈ пСрифСричСского сайтов ацСтилхолинэстСразы, соотвСтствСнно. ГСтСроцикличСский скаффолд ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ связан Π² Ρ„ΠΎΡ€ΠΌΠ΅ Ρ‚ΠΈΠ°Π·ΠΎΠ»ΠΈΠ΅Π²ΠΎΠ³ΠΎ ΠΈΠΎΠ½Π° ΠΈΠ»ΠΈΠ² Ρ„ΠΎΡ€ΠΌΠ΅ Π½Π΅ΠΉΡ‚Ρ€Π°Π»ΡŒΠ½ΠΎΠ³ΠΎ тСтраэдричСского ΠΈΠ½Ρ‚Π΅Ρ€ΠΌΠ΅Π΄ΠΈΠ°Ρ‚Π° раскрытия Ρ‚ΠΈΠ°Π·ΠΎΠ»ΠΈΠ΅Π²ΠΎΠ³ΠΎ Ρ†ΠΈΠΊΠ»Π°.ΠœΠ΅Ρ‚ΠΎΡŽ Ρ€ΠΎΠ±ΠΎΡ‚ΠΈ Π±ΡƒΠ»Π° ΠΎΡ†Ρ–Π½ΠΊΠ° структурних особливостСй замісників Ρ– Ρ€ΠΎΠ»Ρ– Ρ‚Ρ–Π°Π·ΠΎΠ»Ρ–Ρ”Π²ΠΎΠ³ΠΎ скафолду Ρƒ ΠΌΠ΅Ρ…Π°Π½Ρ–Π·ΠΌΠ°Ρ… інгібування ацСтилхолінСстСрази солями Ρ‚Ρ–Π°Π·ΠΎΠ»Ρ–ΡŽ.Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ΠΈ Ρ‚Π° Ρ—Ρ… обговорСння. На основі активності ΠΏΡ€ΠΈ рН 6,5 Ρ– рН 8,0 Ρ‚Π° Π·Π° Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Π°ΠΌΠΈ молСкулярного Π΄ΠΎΠΊΡ–Π½Π³Ρƒ ΠΏΡ€ΠΎΠ°Π½Π°Π»Ρ–Π·ΠΎΠ²Π°Π½Ρ– способи зв’язування Π°Ρ†Π΅Ρ‚ΠΈΠ»Ρ…ΠΎΠ»Ρ–Π½Π΅ΡΡ‚Π΅Ρ€Π°Π·ΠΎΡŽ ΠΊΠ²Π°Ρ‚Π΅Ρ€Π½Ρ–Π·ΠΎΠ²Π°Π½ΠΈΡ… ΠΏΠΎΡ…Ρ–Π΄Π½ΠΈΡ… 5-(2-гідроксіСтил)-4-ΠΌΠ΅Ρ‚ΠΈΠ»Ρ‚Ρ–Π°Π·ΠΎΠ»Ρƒ Π· Ρ€Ρ–Π·Π½ΠΈΠΌΠΈ замісниками Π² полоТСннях 3 Ρ– 5. ΠΠ°ΡΠ²Π½Ρ–ΡΡ‚ΡŒ N(3)-бСнзильного замісника Π·Π°Π±Π΅Π·ΠΏΠ΅Ρ‡ΡƒΡ” Π½Π°ΠΉΠΊΡ€Π°Ρ‰Π΅ закріплСння Ρ–Π½Π³Ρ–Π±Ρ–Ρ‚ΠΎΡ€Π° Π² ΠΊΠ°Ρ‚Π°Π»Ρ–Ρ‚ΠΈΡ‡Π½ΠΎΠΌΡƒ Π°Π½Ρ–ΠΎΠ½Π½ΠΎΠΌΡƒ сайті, Ρ‚ΠΎΠ΄Ρ– як Π°Ρ†ΠΈΠ»ΡŒΠ½Ρ– Ρ„Ρ€Π°Π³ΠΌΠ΅Π½Ρ‚ΠΈ замісників Ρƒ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½Π½Ρ– 5 Ρ€ΠΎΠ·Ρ‚Π°ΡˆΠΎΠ²ΡƒΡŽΡ‚ΡŒΡΡ Π² області ΠΏΠ΅Ρ€ΠΈΡ„Π΅Ρ€ΠΈΡ‡Π½ΠΎΠ³ΠΎ Π°Π½Ρ–ΠΎΠ½Π½ΠΎΠ³ΠΎ сайту. Π›ΠΎΠ³Π°Ρ€ΠΈΡ„ΠΌΠΈ Π·Π½Π°Ρ‡Π΅Π½ΡŒ Π†Π‘50, Π·Π° Π²ΠΈΠΊΠ»ΡŽΡ‡Π΅Π½Π½ΡΠΌ сполук Π· О-Π°Ρ†ΠΈΠ»ΡŒΠ½ΠΈΠΌΠΈ ΠΊΠ°Ρ€Π±ΠΎΡ†ΠΈΠΊΠ»Ρ–Ρ‡Π½ΠΈΠΌΠΈ Π³Ρ€ΡƒΠΏΠ°ΠΌΠΈ, Π»Ρ–Π½Ρ–ΠΉΠ½ΠΎ Π·Π°Π»Π΅ΠΆΠ°Ρ‚ΡŒ Π²Ρ–Π΄ Ρ€ΠΎΠ·Ρ€Π°Ρ…ΠΎΠ²Π°Π½ΠΈΡ… Π΅Π½Π΅Ρ€Π³Ρ–ΠΉ Π΄ΠΎΠΊΡ–Π½Π³Ρƒ як Ρƒ Π²ΠΈΠΏΠ°Π΄ΠΊΡƒ Ρ‚Ρ–Π°Π·ΠΎΠ»Ρ–Ρ”Π²ΠΎΠ³ΠΎ Ρ–ΠΎΠ½Ρƒ, Ρ‚Π°ΠΊ Ρ– Ρƒ Ρ€Π°Π·Ρ– Π½Π΅ΠΉΡ‚Ρ€Π°Π»ΡŒΠ½ΠΎΠ³ΠΎ Ρ‚Π΅Ρ‚Ρ€Π°Π΅Π΄Ρ€ΠΈΡ‡Π½ΠΎΠ³ΠΎ Ρ–Π½Ρ‚Π΅Ρ€ΠΌΠ΅Π΄Ρ–Π°Ρ‚Ρƒ розкриття Ρ‚Ρ–Π°Π·ΠΎΠ»Ρ–Ρ”Π²ΠΎΠ³ΠΎ Ρ†ΠΈΠΊΠ»Ρƒ.Π•ΠΊΡΠΏΠ΅Ρ€ΠΈΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½Π° частина. Π‘ΠΎΠ»Ρ– Ρ‚Ρ–Π°Π·ΠΎΠ»Ρ–ΡŽ синтСзовані Π²Ρ–Π΄ΠΎΠΌΠΈΠΌΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄Π°ΠΌΠΈ. ΠΠΊΡ‚ΠΈΠ²Π½Ρ–ΡΡ‚ΡŒ ацСтилхолінСстСрази Π²ΠΈΠ·Π½Π°Ρ‡Π°Π»ΠΈ Π·Π° ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ Π•Π»ΠΌΠ°Π½Π°. ΠœΠΎΠ»Π΅ΠΊΡƒΠ»ΡΡ€Π½ΠΈΠΉ Π΄ΠΎΠΊΡ–Π½Π³ Ρƒ ΠΎΠ±Π»Π°ΡΡ‚ΡŒ Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΠ³ΠΎ Ρ†Π΅Π½Ρ‚Ρ€Ρƒ ацСтилхолінСстСрази здійснСно Π· використанням ΠΏΡ€ΠΎΠ³Ρ€Π°ΠΌΠΈ AutoDock 4.2.Висновки. Π‘Ρ‚Ρ€ΡƒΠΊΡ‚ΡƒΡ€Π½Ρ– Ρ„Ρ€Π°Π³ΠΌΠ΅Π½Ρ‚ΠΈ замісників Ρƒ полоТСннях 3 Ρ– 5 Π³Π΅Ρ‚Π΅Ρ€ΠΎΡ†ΠΈΠΊΠ»Ρ–Ρ‡Π½ΠΎΠ³ΠΎ скафолду Π·Π°Π±Π΅Π·ΠΏΠ΅Ρ‡ΡƒΡŽΡ‚ΡŒ зв’язування Ρ–Π½Π³Ρ–Π±Ρ–Ρ‚ΠΎΡ€Π° Π² області ΠΊΠ°Ρ‚Π°Π»Ρ–Ρ‚ΠΈΡ‡Π½ΠΎΠ³ΠΎ Ρ– ΠΏΠ΅Ρ€ΠΈΡ„Π΅Ρ€ΠΈΡ‡Π½ΠΎΠ³ΠΎ Π°Π½Ρ–ΠΎΠ½Π½ΠΈΡ… сайтів ацСтилхолінСстСрази, Π²Ρ–Π΄ΠΏΠΎΠ²Ρ–Π΄Π½ΠΎ. Π“Π΅Ρ‚Π΅Ρ€ΠΎΡ†ΠΈΠΊΠ»Ρ–Ρ‡Π½ΠΈΠΉ скафолд ΠΌΠΎΠΆΠ΅ Π±ΡƒΡ‚ΠΈ зв’язаний Ρƒ Ρ„ΠΎΡ€ΠΌΡ– Ρ‚Ρ–Π°Π·ΠΎΠ»Ρ–Ρ”Π²ΠΎΠ³ΠΎ Ρ–ΠΎΠ½Π° Π°Π±ΠΎ Ρƒ Ρ„ΠΎΡ€ΠΌΡ– Π½Π΅ΠΉΡ‚Ρ€Π°Π»ΡŒ-Π½ΠΎΠ³ΠΎ Ρ‚Π΅Ρ‚Ρ€Π°Π΅Π΄Ρ€ΠΈΡ‡Π½ΠΎΠ³ΠΎ Ρ–Π½Ρ‚Π΅Ρ€ΠΌΠ΅Π΄Ρ–Π°Ρ‚Ρƒ розкриття Ρ‚Ρ–Π°Π·ΠΎΠ»Ρ–Ρ”Π²ΠΎΠ³ΠΎ Ρ†ΠΈΠΊΠ»Ρƒ
    • …
    corecore