7 research outputs found

    Chromospheric fine structure didactically

    Get PDF
    The solar chromosphere is occupied with a wealth of fine structures referred to by diverse nomenclature. Recent identification of slow-mode magnetoacoustic shocks, excited by p-modes of photospheric oscillations, as plausible drivers of dynamic fibrils and spicules was followed by a surge of observational studies and numerical simulations attempting to reveal the role of chromospheric fine structure in energizing of the upper solar atmosphere. The paper summarizes didactically this breakthrough and provides ample references on the pertinent literature

    Chromospheric fine structure didactically

    Get PDF
    The solar chromosphere is occupied with a wealth of fine structures referred to by diverse nomenclature. Recent identification of slow-mode magnetoacoustic shocks, excited by p-modes of photospheric oscillations, as plausible drivers of dynamic fibrils and spicules was followed by a surge of observational studies and numerical simulations attempting to reveal the role of chromospheric fine structure in energizing of the upper solar atmosphere. The paper summarizes didactically this breakthrough and provides ample references on the pertinent literature

    Density, porosity and magnetic susceptibility of the Košice meteorite shower and homogeneity of its parent meteoroid

    Get PDF
    Bulk and grain density, porosity, and magnetic susceptibility of 67 individuals of Košice H chondrite fall were measured. The mean bulk and grain densities were determined to be 3.43 g/cm3 with standard deviation (s.d.) of 0.11 g/cm3 and 3.79 g/cm3 with s.d. 0.07 g/cm3, respectively. Porosity is in the range from 4.2 to 16.1%. The logarithm of the apparent magnetic susceptibility (in 10−9 m3/kg) shows narrow distribution from 5.17 to 5.49 with mean value at 5.35 with s.d. 0.08. These results indicate that all studied Košice meteorites are of the same composition down to ∼g scale without presence of foreign (non-H) clasts and are similar to other H chondrites. Košice is thus a homogeneous meteorite fall derived from a homogenous meteoroid.Peer reviewe

    Ethanol-lactate transition of Lachancea thermotolerans is linked to nitrogen metabolism

    No full text
    Climate change increases sugar content in grapes, resulting in unwanted increase in ethanol content of wine. Lachancea thermotolerans ferments glucose and fructose into both ethanol and lactate, decreasing final ethanol content and positively affecting wine acidity. Reported Lachancea thermotolerans strains show big variation in lactate production during fermentation. However, a mechanistic understanding of this lactate producing phenotype is currently lacking. Through a combination of metabolomics, transcriptomics, genomics and computational methods we show that the lactate production is induced by amino acid limitation in a high lactate producing strain. We found in fermentations in synthetic grape juice media that lactate production starts in the last stages of growth, marked by decreased growth rate and increased expression levels of stress related genes. This onset of lactate production is specific for the high lactate producing strain and independent of oxygen availability. The onset of lactate production was changed by increased amino acid content of the media, and it is shown by both computational methods and amino acid measurements that at the onset of lactate production amino acids become limiting for growth. This study shows that lactate production of Lachancea thermotolerans is directly linked to nitrogen availability in the media, an insight that can further aid in the improvement of wine quality

    Ethanol-Lactate Transition of Lachancea Thermotolerans Is Linked to Nitrogen Metabolism

    No full text
    Climate change increases sugar content in grapes, resulting in unwanted increase in ethanol content of wine. Lachancea thermotolerans ferments glucose and fructose into both ethanol and lactate, decreasing final ethanol content and positively affecting wine acidity. Reported Lachancea thermotolerans strains show big variation in lactate production during fermentation. However, a mechanistic understanding of this lactate producing phenotype is currently lacking. Through a combination of metabolomics, transcriptomics, genomics and computational methods we show that the lactate production is induced by amino acid limitation in a high lactate producing strain. We found in fermentations in synthetic grape juice media that lactate production starts in the last stages of growth, marked by decreased growth rate and increased expression levels of stress related genes. This onset of lactate production is specific for the high lactate producing strain and independent of oxygen availability. The onset of lactate production was changed by increased amino acid content of the media, and it is shown by both computational methods and amino acid measurements that at the onset of lactate production amino acids become limiting for growth. This study shows that lactate production of Lachancea thermotolerans is directly linked to nitrogen availability in the media, an insight that can further aid in the improvement of wine quality

    Ethanol-Lactate Transition of Lachancea Thermotolerans Is Linked to Nitrogen Metabolism

    No full text
    Climate change increases sugar content in grapes, resulting in unwanted increase in ethanol content of wine. Lachancea thermotolerans ferments glucose and fructose into both ethanol and lactate, decreasing final ethanol content and positively affecting wine acidity. Reported Lachancea thermotolerans strains show big variation in lactate production during fermentation. However, a mechanistic understanding of this lactate producing phenotype is currently lacking. Through a combination of metabolomics, transcriptomics, genomics and computational methods we show that the lactate production is induced by amino acid limitation in a high lactate producing strain. We found in fermentations in synthetic grape juice media that lactate production starts in the last stages of growth, marked by decreased growth rate and increased expression levels of stress related genes. This onset of lactate production is specific for the high lactate producing strain and independent of oxygen availability. The onset of lactate production was changed by increased amino acid content of the media, and it is shown by both computational methods and amino acid measurements that at the onset of lactate production amino acids become limiting for growth. This study shows that lactate production of Lachancea thermotolerans is directly linked to nitrogen availability in the media, an insight that can further aid in the improvement of wine quality
    corecore