563 research outputs found

    A 7/9 - Approximation Algorithm for the Maximum Traveling Salesman Problem

    Full text link
    We give a 7/9 - Approximation Algorithm for the Maximum Traveling Salesman Problem.Comment: 6 figure

    The impact of skull bone intensity on the quality of compressed CT neuro images

    Get PDF
    International audienceThe increasing use of technologies such as CT and MRI, along with a continuing improvement in their resolution, has contributed to the explosive growth of digital image data being generated. Medical communities around the world have recognized the need for efficient storage, transmission and display of medical images. For example, the Canadian Association of Radiologists (CAR) has recommended compression ratios for various modalities and anatomical regions to be employed by lossy JPEG and JPEG2000 compression in order to preserve diagnostic quality. Here we investigate the effects of the sharp skull edges present in CT neuro images on JPEG and JPEG2000 lossy compression. We conjecture that this atypical effect is caused by the sharp edges between the skull bone and the background regions as well as between the skull bone and the interior regions. These strong edges create large wavelet coefficients that consume an unnecessarily large number of bits in JPEG2000 compression because of its bitplane coding scheme, and thus result in reduced quality at the interior region, which contains most diagnostic information in the image. To validate the conjecture, we investigate a segmentation based compression algorithm based on simple thresholding and morphological operators. As expected, quality is improved in terms of PSNR as well as the structural similarity (SSIM) image quality measure, and its multiscale (MS-SSIM) and informationweighted (IW-SSIM) versions. This study not only supports our conjecture, but also provides a solution to improve the performance of JPEG and JPEG2000 compression for specific types of CT images

    Riddled-like Basin in Two-Dimensional Map for Bouncing Motion of an Inelastic Particle on a Vibrating Board

    Full text link
    Motivated by bouncing motion of an inelastic particle on a vibrating board, a simple two-dimensional map is constructed and its behavior is studied numerically. In addition to the typical route to chaos through a periodic doubling bifurcation, we found peculiar behavior in the parameter region where two stable periodic attractors coexist. A typical orbit in the region goes through chaotic motion for an extended transient period before it converges into one of the two periodic attractors. The basin structure in this parameter region is almost riddling and the fractal dimension of the basin boundary is close to two, {\it i.e.}, the dimension of the phase space.Comment: 4 pages, 5 figures. to be published in J. Phys. Soc. Jpn. (2002

    Numerical simulation of solitary wave propagation over a steady current

    Get PDF
    YesA two-dimensional numerical model is developed to study the propagation of a solitary wave in the presence of a steady current flow. The numerical model is based on the Reynolds-averaged Navier-Stokes (RANS) equations with a k-ε turbulence closure scheme and an internal wave-maker method. To capture the air-water interface, the volume of fluid (VOF) method is used in the numerical simulation. The current flow is initialized by imposing a steady inlet velocity on one computational domain end and a constant pressure outlet on the other end. The desired wave is generated by an internal wave-maker. The propagation of a solitary wave travelling with a following/opposing current is simulated. The effects of the current velocity on the solitary wave motion are investigated. The results show that the solitary wave has a smaller wave height, larger wave width and higher travelling speed after interacting with a following current. Contrariwise, the solitary wave becomes higher with a smaller wave width and lower travelling speed with an opposing current. The regression equations for predicting the wave height, wave width and travelling speed of the resulting solitary wave are for practical engineering applications. The impacts of current flow on the induced velocity and the turbulent kinetic energy (TKE) of a solitary wave are also investigated.National Natural Science Foundation of China Grant #51209083, #51137002 and #41176073, the Natural Science Foundation of Jiangsu Province (China) Grant #BK2011026, the 111 Project under Grant No. B12032, the Fundamental Research Funds for the Central University, China (2013B31614), and the Carnegie Trust for Scottish Universitie

    Measurements of π±\pi^\pm, K±K^\pm, KS0K^0_S, Λ\Lambda and proton production in proton-carbon interactions at 31 GeV/cc with the NA61/SHINE spectrometer at the CERN SPS

    Get PDF
    Measurements of hadron production in p+C interactions at 31 GeV/c are performed using the NA61/ SHINE spectrometer at the CERN SPS. The analysis is based on the full set of data collected in 2009 using a graphite target with a thickness of 4% of a nuclear interaction length. Inelastic and production cross sections as well as spectra of π±\pi^\pm, K±K^\pm, p, KS0K^0_S and Λ\Lambda are measured with high precision. These measurements are essential for improved calculations of the initial neutrino fluxes in the T2K long-baseline neutrino oscillation experiment in Japan. A comparison of the NA61/SHINE measurements with predictions of several hadroproduction models is presented.Comment: v1 corresponds to the preprint CERN-PH-EP-2015-278; v2 matches the final published versio

    Measurements of π±\pi^\pm, K±^\pm, p and pˉ\bar{\textrm{p}} spectra in proton-proton interactions at 20, 31, 40, 80 and 158 GeV/c with the NA61/SHINE spectrometer at the CERN SPS

    Get PDF
    Measurements of inclusive spectra and mean multiplicities of π±\pi^\pm, K±^\pm, p and pˉ\bar{\textrm{p}} produced in inelastic p+p interactions at incident projectile momenta of 20, 31, 40, 80 and 158 GeV/c (s=\sqrt{s} = 6.3, 7.7, 8.8, 12.3 and 17.3 GeV, respectively) were performed at the CERN Super Proton Synchrotron using the large acceptance NA61/SHINE hadron spectrometer. Spectra are presented as function of rapidity and transverse momentum and are compared to predictions of current models. The measurements serve as the baseline in the NA61/SHINE study of the properties of the onset of deconfinement and search for the critical point of strongly interacting matter

    Multiplicity and transverse momentum fluctuations in inelastic proton-proton interactions at the CERN Super Proton Synchrotron

    Get PDF
    Measurements of multiplicity and transverse momentum fluctuations of charged particles were performed in inelastic p+p interactions at 20, 31, 40, 80 and 158 GeV/c beam momentum. Results for the scaled variance of the multiplicity distribution and for three strongly intensive measures of multiplicity and transverse momentum fluctuations \$\Delta[P_{T},N]\$, \$\Sigma[P_{T},N]\$ and \$\Phi_{p_T}\$ are presented. For the first time the results on fluctuations are fully corrected for experimental biases. The results on multiplicity and transverse momentum fluctuations significantly deviate from expectations for the independent particle production. They also depend on charges of selected hadrons. The string-resonance Monte Carlo models EPOS and UrQMD do not describe the data. The scaled variance of multiplicity fluctuations is significantly higher in inelastic p+p interactions than in central Pb+Pb collisions measured by NA49 at the same energy per nucleon. This is in qualitative disagreement with the predictions of the Wounded Nucleon Model. Within the statistical framework the enhanced multiplicity fluctuations in inelastic p+p interactions can be interpreted as due to event-by-event fluctuations of the fireball energy and/or volume.Comment: 18 pages, 12 figure

    Strangelet search at RHIC

    Full text link
    Two position sensitive Shower Maximum Detector (SMDs) for Zero-Degree Calorimeters (ZDCs) were installed by STAR before run 2004 at both upstream and downstream from the interaction point along the beam axis where particles with small rigidity are swept away by strong magnetic field. The ZDC-SMDs provides information about neutral energy deposition as a function of transverse position in ZDCs. We report the preliminary results of strangelet search from a triggered data-set sampling 100 million Au+Au collisions at top RHIC energy.Comment: Strange Quark Matter 2004 conference proceedin

    Multiplicity and Pseudorapidity Distributions of Charged Particles and Photons at Forward Pseudorapidity in Au + Au Collisions at sqrt{s_NN} = 62.4 GeV

    Get PDF
    We present the centrality dependent measurement of multiplicity and pseudorapidity distributions of charged particles and photons in Au + Au collisions at sqrt{s_NN} = 62.4 GeV. The charged particles and photons are measured in the pseudorapidity region 2.9 < eta < 3.9 and 2.3 < eta < 3.7, respectively. We have studied the scaling of particle production with the number of participating nucleons and the number of binary collisions. The photon and charged particle production in the measured pseudorapidity range has been shown to be consistent with energy independent limiting fragmentation behavior. The photons are observed to follow a centrality independent limiting fragmentation behavior while for the charged particles it is centrality dependent. We have carried out a comparative study of the pseudorapidity distributions of positively charged hadrons, negatively charged hadrons, photons, pions, net protons in nucleus--nucleus collisions and pseudorapidity distributions from p+p collisions. From these comparisons we conclude that baryons in the inclusive charged particle distribution are responsible for the observed centrality dependence of limiting fragmentation. The mesons are found to follow an energy independent behavior of limiting fragmentation while the behavior of baryons seems to be energy dependent.Comment: 17 pages and 20 figure

    Identified baryon and meson distributions at large transverse momenta from Au+Au collisions at sNN=200\sqrt{s_{_{NN}}} = 200 GeV

    Get PDF
    Transverse momentum spectra of π±\pi^{\pm}, pp and pˉ\bar{p} up to 12 GeV/c at mid-rapidity in centrality selected Au+Au collisions at sNN=200\sqrt{s_{_{NN}}} = 200 GeV are presented. In central Au+Au collisions, both π±\pi^{\pm} and p(pˉ)p(\bar{p}) show significant suppression with respect to binary scaling at pT>p_T > 4 GeV/c. Protons and anti-protons are less suppressed than π±\pi^{\pm}, in the range 1.5 <pT<< p_{T} <6 GeV/c. The π/π+\pi^-/\pi^+ and pˉ/p\bar{p}/p ratios show at most a weak pTp_T dependence and no significant centrality dependence. The p/πp/\pi ratios in central Au+Au collisions approach the values in p+p and d+Au collisions at pT>p_T > 5 GeV/c. The results at high pTp_T indicate that the partonic sources of π±\pi^{\pm}, pp and pˉ\bar{p} have similar energy loss when traversing the nuclear medium.Comment: 6 pages, 4 figure
    corecore