260 research outputs found

    Influence of the Pd : Bi ratio on Pd–Bi/Al2O3 catalysts: structure, surface and activity in glucose oxidation

    Get PDF
    Pd–Bi nanoparticles show high efficiency in catalyzing gluconic acid production by the glucose oxidation reaction. Although this type of catalyst was studied for some time, the correlation between bismuth content and catalytic activity is still unclear. Moreover, there is little information on the principles of the formation of Pd–Bi nanoparticles. In this work, the relation between bismuth content and the activity and selectivity of the PdxBiy/Al2O3 catalyst in the glucose oxidation process was studied. The catalytic samples were prepared by co-impregnation of the alumina support utilizing the metal–organic precursors of Pd and Bi. The samples obtained were tested in the glucose oxidation reaction and were studied by transmission electron microscopy (TEM), X-ray fluorescence analysis, X-ray photoelectron spectroscopy (XPS), and BET adsorption. It has been found that the Pd3 : Bi1 atomic ratio grants the highest catalytic efficiency for the studied samples. To explain this, we predicted stable Pd–Bi nanoparticles using ab initio evolutionary algorithm USPEX. The calculations demonstrate that nanoparticles tend to form Pd(core)–Bi(shell) structures turning to a crownjewel morphology at lower Bi concentration, thus exposing the active Pd centers while maintaining the promoting effect of Bi

    Sorghum-Sudanese hybrid Dobrynya as a result of heterosis selection

    Get PDF
    Sorghum-Sudanese hybrids, due to the heterosis effect, have not only increased productivity, but also uniformity, increased vitality, as well as resistance to various diseases and stress factors in comparison with parental forms. The purpose of the work: to characterize the new hybrid Dobrynya, created as a result of heterosis selection, according to the main morphological, biological, economically valuable indicators. The studies were carried out at the Federal State Budgetary Scientific Institution, Agrarian Research Center “Donskoy” (ARC “Donskoy”). The soil of the experimental plot is ordinary carbonate chernozem. The advantages of the hybrid include high foliage (13 leaves per plant) - 39-41% of the leaf mass of plants, good protrusion of the legs (30-35 cm), succulence, tillering, cold resistance. The duration of the period “sprouts-heading” on average for 2019-2022. was 55 days (mid-season), which is 5 days less than the standard. Sorghum-Sudanese hybrid Dobrynya is characterized by a high yield of green mass - 63 t/ha (in total for 2 cuttings) and dry matter - 13.0 t/ha, which is higher than the standard by 28.6 and 31.3%, respectively. -essentially. And in terms of the content of crude protein and the collection of digestible protein, it significantly exceeds it by 1.1% and 0.24 t/ha. According to the results of the assessment in natural conditions, Dobrynya is distinguished by high or practical resistance to loose smut and bacteriosis. The sorghum-Sudanese hybrid has been included in the State Register of Breeding Achievements since 2023 and is recommended for use for green fodder and silage in the Central Black Earth, North Caucasus and Lower Volga regions of Russia

    NMR microimaging of fluid flowin model string-type reactors

    Get PDF
    Magnetic resonance microimaging (MRM) was employed to obtain quantitative velocity maps of water flowing in the channels possessing unconventional cross-section shapes formed by a bundle of parallel fibers within a tubular string-type reactor. The maps obtained demonstrate the presence of large amounts of an almost stagnant liquid in the stretched corners of the cross-sections representing distorted triangles or squares. This fact together with the irregularity of the filaments packing in the model string-type reactor was demonstrated to lead to a broad residence time distributions (RTDs) for liquid flow. Next, the pulsed field gradient NMR (PFG NMR) technique was employed to compare transport of water with that of butane gas in the same model string-type reactor. The experimentally measured average propagators (travel distance probability density functions) have demonstrated that Taylor dispersion can lead to much better RTDs for gas as compared to liquid in channels with sub-millimeter equivalent diameters. The PFG NMR data were compared with the RTD obtained using the conventional tracer time-of-flight transient response method. It is concluded that due to the differences in the quantities actually measured by the two techniques, and the significant differences in the measurement length scales (microns to 1–2 cm for NMR/MRM, tens of centimeters for transient response methods), there is no reliable way of directly comparing these results. The information obtained by NMR/MRM and more conventional techniques such as time-of-flight should be considered as complementary. In particular, NMR/MRM can reveal the reasons for the observed overall reactor performance by providing access to the transport processes on short length scales inside the reactor and by revealing structure–transport interrelation

    NMR Imaging of low pressure, gas-phase transport in packed beds using hyperpolarized xenon-129

    Get PDF
    Gas-phase magnetic resonance imaging (MRI) has been used to investigate heterogeneity in mass transport in a packed bed of commercial, alumina, catalyst supports. Hyperpolarized 129Xe MRI enables study of transient diffusion for micro- scopic porous systems using xenon chemical shift to selectively image gas within the pores, and, thence, permits study of low-density, gas-phase mass-transport, such that diffusion can be studied in the Knudsen regime, and not just the molecular regime, which is the limitation with other current techniques. Knudsen-regime diffusion is common in many industrial, catalytic processes. Significantly, larger spatial variability in mass transport rates across the packed bed was found compared to techniques using only molecular diffusion. It has thus been found that that these heterogeneities arise over length-scales much larger tha

    Polyphenol oxidase from Pectobacterium atrosepticum: identification and cloning of gene and characteristics of the enzyme

    Get PDF
    © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim In the present study, we attempted to elucidate if the harmful phytopathogenic bacteria of Pectobacterium genus (P. atrosepticum) possess the enzymes for oxidation of phenolic compounds. Polyphenol oxidase (laccase) activity was revealed in P. atrosepticum cell lysates. Using bioinformatic analysis, an ORF encoding a putative copper-containing polyphenol oxidase of 241 amino acids with a predicted molecular mass of 25.9 kDa was found. This protein (named Pal1) shares significant level of identity with laccases of a new type described for several bacterial species. Cloning and expression of the pal1 gene and the analysis of corresponding recombinant protein confirmed that Pal1 possessed laccase activity. The recombinant Pal1 protein was characterized in terms of substrate specificity, kinetic parameters, pH and temperature optimum, sensitivity to inhibitors and metal content. Pal1 demonstrated alkali- and thermo-tolerance. The kinetic parameters K m and kcat for 2,6-dimethoxyphenol were 0.353 ± 0.062 mM and 98.79 ± 4.9 s −1 , respectively. The protein displayed high tolerance to sodium azide, sodium fluoride, NaCl, SDS and cinnamic acid. The transcript level of the pal1 gene in P. atrosepticum was shown to be induced by plant-derived phenolic compound (ferulic acid) and copper sulfate

    Spontaneous N-15 Nuclear Spin Hyperpolarization in Metal-Free Activation of Parahydrogen by Molecular Tweezers

    Get PDF
    The ability of frustrated Lewis pairs (FLPs) to activate H-2 is of significant interest for metal-free catalysis. The activation of H-2 is also the key element of parahydrogen-induced polarization (PHIP), one of the nuclear spin hyper polarization techniques. It is demonstrated that o-phenylene-based ansa-aminoboranes (AABs) can produce H-1 nuclear spin hyperpolarization through a reversible interaction with parahydrogen at ambient temperatures. Heteronuclei are useful in NMR and MRI as well because they have a broad chemical shift range and long relaxation times and may act as background-free labels. We report spontaneous formation of N-15 hyperpolarization of the N-H site for a family of AABs. The process is efficient at the high magnetic field of an NMR magnet (7 T), and it provides up to 350-fold N-15 signal enhancements. Different hyperpolarization effects are observed with various AAB structures and in a broad temperature range. Spontaneous hyperpolarization, albeit an order of magnitude weaker than that for N-15, was also observed for B-11 nuclei.Peer reviewe

    Low-valent homobimetallic Rh complexes: influence of ligands on the structure and the intramolecular reactivity of Rh–H intermediates

    Get PDF
    Supporting two metal binding sites by a tailored polydentate trop-based (trop - 5H-dibenzo[a,d] cyclohepten-5-yl) ligand yields highly unsymmetric homobimetallic rhodium(I) complexes. Their reaction with hydrogen rapidly forms Rh hydrides that undergo an intramolecular semihydrogenation of two C≡C bonds of the trop ligand. This reaction is chemoselective and converts C≡C bonds to a bridging carbene and an olefinic ligand in the first and the second semihydrogenation steps, respectively. Stabilization by a bridging diphosphine ligand allows characterization of a Rh hydride species by advanced NMR techniques and may provide insight into possible elementary steps of H₂ activation by interfacial sites of heterogeneous Rh/C catalysts
    corecore