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Abstract

© 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim In the present study, we attempted to
elucidate if the harmful phytopathogenic bacteria of Pectobacterium genus (P. atrosepticum)
possess the enzymes for oxidation of phenolic compounds. Polyphenol oxidase (laccase) activity
was revealed in P. atrosepticum cell lysates. Using bioinformatic analysis, an ORF encoding a
putative copper-containing polyphenol oxidase of 241 amino acids with a predicted molecular
mass of 25.9 kDa was found. This protein (named Pal1) shares significant level of identity with
laccases of a new type described for several bacterial species. Cloning and expression of the
pal1 gene and the analysis of corresponding recombinant protein confirmed that Pal1 possessed
laccase  activity.  The  recombinant  Pal1  protein  was  characterized  in  terms  of  substrate
specificity, kinetic parameters, pH and temperature optimum, sensitivity to inhibitors and metal
content. Pal1 demonstrated alkali- and thermo-tolerance. The kinetic parameters K m and kcat
for 2,6-dimethoxyphenol were 0.353 ± 0.062 mM and 98.79 ± 4.9 s −1 , respectively. The
protein displayed high tolerance to sodium azide, sodium fluoride, NaCl, SDS and cinnamic acid.
The transcript level of the pal1 gene in P. atrosepticum was shown to be induced by plant-
derived phenolic compound (ferulic acid) and copper sulfate.
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