444 research outputs found

    A Korean Family of Familial Medullary Thyroid Cancer with Cys618Ser RET Germline Mutation

    Get PDF
    Familial medullary thyroid carcinoma (FMTC) is caused by autosomal dominant gain-of-function mutations in the RET proto-oncogene. An identifiable RET mutation can be detected in about 85% of FMTC families. The majority of germline mutations in FMTC have been found in exons 10 and 11 of the RET proto-oncogene, specifically within the cysteine codons 609, 611, 618, 620, and 634. We screened members of a large Korean family that had a history of FMTC by genetic analyses, and propose a therapeutic approach for managing the disorder. We report a RET mutation in exon10, codon 618 that causes substitution of a cysteine by a serine in the cysteine-rich domain of the RET receptor in a three-generation FMTC family composed of 30 members with 11 carriers. Nine of the gene carriers were clinically affected. The FMTC with cysteine RET mutations found in the Korean population is consistent with the clinical pattern reported worldwide; to date there have been no ethnic differences identified for FMTC. Our results suggest that this genetic profile might be associated with usually aggressive clinical course with regional lymph node metastasis but late onset of MTC

    Skp2 expression is associated with high risk and elevated Ki67 expression in gastrointestinal stromal tumours

    Get PDF
    BACKGROUND: Gastrointestinal stromal tumors (GIST) exhibit an unpredictable clinical course and can rapidly progress to lethality. Predictions about the biological behavior of GIST are based on a number of canonical clinical and pathologic parameters whose validity in distinguishing between a benign and a malignant tumour is still imperfect. The aim of our study was to investigate the role of morphologic parameters and expression of cells cycle regulators as prognosticators in GIST. METHODS: We performed an immunohistochemical analysis for Ki67, p27Kip1, Jab1, and Skp2, on a Tissue Microarray (TMA) containing 94 GIST. Expression of the above proteins was correlated to classically used prognosticators, as well as to risk groups. Clinical significance of histologic and immunohistochemical features were evaluated in 59 patients for whom follow-up information was available. RESULTS: Overexpression of Ki67 and Skp2, and p27Kip1 loss directly correlated with the high risk group (p = 0.03 for Ki67 and Skp2, p = 0.05 for p27Kip1). Jab1 expression did not exhibit correlation with risk. In 59 cases provided with clinical follow-up, high cellularity, presence of necrosis, and Ki67 overexpression were predictive of a reduced overall survival in a univariate model. The same parameters, as well as mitotic rate, tumour size, and p27Kip1 loss were indicative of a shortened relapse free survival interval. High cellularity, and high mitotic rate retained their prognostic significance by multivariate analysis. CONCLUSION: Our data suggest that a number of histologic parameters in combination with immunohistochemical expression of cell cycle regulators can facilitate risk categorization and predict biologic behavior in GIST. Importantly this study demonstrates, for the first time, that Skp2 expression correlates with Ki67 expression and high risk in GIST

    Clinicopathological Significance of Expression of Tspan-1, Jab1 and p27 in Human Hepatocellular Carcinoma

    Get PDF
    The aim of this study was to investigate the expression of Tspan-1, Jab1 and p27 in human hepatocellular carcinoma (HCC) and their clinicopathological significance. The expression of Tspan-1, Jab1 and p27 was detected in HCC tissues, the tissues around cancer (76 cases), and the normal tissues around the liver hemangiomas (10 cases). The overexpression of Tspan-1 and Jab1 was found in HCC tissues, positively correlated with clinical stage and negatively correlated with survival rate. The expression of p27 was found inversely linked to which of Tspan-1 and Jab1. In conclusion, the expression of Tspan-1, Jab1 and p27 is significantly associated with development of HCC. Overexpression of Tspan-1 and Jab1 suggests poor prognosis but overexpression of p27 may expect good prognosis for patients with HCC

    The prognostic role of WHO classification, urinary 5-hydroxyindoleacetic acid and liver function tests in metastatic neuroendocrine carcinomas of the gastroenteropancreatic tract

    Get PDF
    The World Health Organisation (WHO) classification (2000) is widely used to classify neuroendocrine carcinomas (NECs), yet its prognostic value needs to be confirmed. In this study, patients with metastatic NECs (n=119) were classified according to WHO guidelines into well differentiated and poorly differentiated (WDNECs and PDNECs). Histological differentiation based on WHO criteria had the highest impact on overall survival (OS) (PDNECs : WDNECs hazard ratio (HR)=4.02, P=0.02); however, PDNECs represented only a small percentage of patients (8%). In a WDNEC-restricted analysis, abnormal liver function tests (LFTs) and elevated urinary 5-hydroxyindoleacetic acid (u5HIAA) were independent prognostic factors for survival (HR=2.65, P=0.006 and HR=2.51, P=0.003, respectively) and were used to create a WDNEC-specific prognostic model (low risk=both normal, intermediate risk=one of them abnormal, high risk=both abnormal). Low-risk WDNECs had the most favourable prognosis (median OS, mOS 8.1 years), which was significantly better compared to both intermediate-risk and high-risk WDNECs (mOS 3.2 and 1.4 years, with P=0.01 and P<0.001, respectively). High-risk WDNECs displayed the shortest OS (1.3 years), which was similar to that of PDNECs (P=0.572). This analysis supports the prognostic value of WHO classification for metastatic NECs arising from the gastroenteropancreatic tract; however, risk stratification using readily available u5HIAA and LFTs may be necessary for the heterogeneous group of WDNECs

    Solution structure of all parallel G-quadruplex formed by the oncogene RET promoter sequence

    Get PDF
    RET protein functions as a receptor-type tyrosine kinase and has been found to be aberrantly expressed in a wide range of human diseases. A highly GC-rich region upstream of the promoter plays an important role in the transcriptional regulation of RET. Here, we report the NMR solution structure of the major intramolecular G-quadruplex formed on the G-rich strand of this region in K+ solution. The overall G-quadruplex is composed of three stacked G-tetrad and four syn guanines, which shows distinct features for all parallel-stranded folding topology. The core structure contains one G-tetrad with all syn guanines and two other with all anti-guanines. There are three double-chain reversal loops: the first and the third loops are made of 3 nt G-C-G segments, while the second one contains only 1 nt C10. These loops interact with the core G-tetrads in a specific way that defines and stabilizes the overall G-quadruplex structure and their conformations are in accord with the experimental mutations. The distinct RET promoter G-quadruplex structure suggests that it can be specifically involved in gene regulation and can be an attractive target for pathway-specific drug design

    Spatial and temporal translational control of germ cell mRNAs mediated by the eIF4E isoform IFE-1

    Get PDF
    Regulated mRNA translation is vital for germ cells to produce new proteins in the spatial and temporal patterns that drive gamete development. Translational control involves the de-repression of stored mRNAs and their recruitment by eukaryotic initiation factors (eIFs) to ribosomes. C. elegans expresses five eIF4Es (IFE-1–IFE-5); several have been shown to selectively recruit unique pools of mRNA. Individual IFE knockouts yield unique phenotypes due to inefficient translation of certain mRNAs. Here, we identified mRNAs preferentially translated through the germline-specific eIF4E isoform IFE-1. Differential polysome microarray analysis identified 77 mRNAs recruited by IFE-1. Among the IFE-1-dependent mRNAs are several required for late germ cell differentiation and maturation. Polysome association of gld-1, vab-1, vpr-1, rab-7 and rnp-3 mRNAs relies on IFE-1. Live animal imaging showed IFE-1-dependent selectivity in spatial and temporal translation of germline mRNAs. Altered MAPK activation in oocytes suggests dual roles for IFE-1, both promoting and suppressing oocyte maturation at different stages. This single eIF4E isoform exerts positive, selective translational control during germ cell differentiation

    Multiple Endocrine Neoplasia Type 1 with Multiple Leiomyomas Linked to a Novel Mutation in the MEN1 Gene

    Get PDF
    Multiple endocrine neoplasia type 1 (MEN1) is an autosomal dominantly inherited syndrome. MEN1 is characterized by the presence of functioning and nonfunctioning tumors or hyperplasia of the pituitary gland, parathyroid glands, and pancreatic islet cells. In addition, MEN1 carriers can have adrenal or thyroid tumors and non-endocrine tumors, such as lipomas, angiofibromas, and leiomyomas. Although leiomyoma is not a major component of MEN1, it is thought to occur more frequently than expected. However, there has been no report of a case of MEN1 with leiomyoma in Korea so far. This report describes a patient with multiple leiomyomas in MEN1. A 50-year-old woman was referred for further evaluation of elevated calcium levels and osteoporosis. Biochemical abnormalities included hypercalcemia with elevated parathyroid hormone. There was hyperprolactinemia with pituitary microadenoma in sella MRI. An abdominal MRI demonstrated adrenal nodules and leiomyomas in the bladder and uterus. Endoscopic ultrasonography demonstrated esophageal leiomyoma and pancreatic islet cell tumor. A subtotal parathyroidectomy with thymectomy was performed. Sequencing of the MEN1 gene in this patient revealed a novel missense mutation (D350V, exon 7). This is the first case of MEN1 accompanied with multiple leiomyomas, parathyroid adenoma, pituitary adenoma, pancreatic tumor, and adrenal tumor

    S100A7 (psoriasin) expression is associated with aggressive features and alteration of Jab1 in ductal carcinoma in situ of the breast

    Get PDF
    INTRODUCTION: The S100A7 (psoriasin) gene is highly expressed in ductal carcinoma in situ (DCIS) of the breast and can be downregulated in invasive carcinoma. Persistent S100A7 expression in invasive carcinoma is associated with a worse prognosis, and this effect may be mediated in part through interaction with the multifunctional cell signaling protein Jab1. METHODS: In order to investigate the relationship between S100A7 and progression from DCIS to invasive carcinoma, we studied S100A7 expression in 136 patients with DCIS (including 46 patients with associated invasive carcinoma) by immunohistochemistry. RESULTS: S100A7 expression was present in 63 out of 136 (46%) of DCIS lesions and was associated with estrogen receptor negative status (P = 0.0002), higher nuclear grade (P < 0.0001), necrosis (P < 0.0001) and inflammation (P < 0.0001). S100A7 status was no different between DCIS with and DCIS without an invasive component, but higher levels of S100A7 were present in DCIS associated with invasive carcinoma (P < 0.004). Analysis of a subset of cases showed that S100A7 expression was also associated with an increase in nuclear Jab1 (n = 43; P = 0.0019) and reduced p27(kip1 )(n = 47; P = 0.0168). In cases of DCIS associated with invasive carcinoma, there was also a significant reduction in S100A7 between in situ and invasive components (n = 46; P < 0.0001). In pure DCIS cases treated by local excision, there was no difference in frequency of S100A7 expression between patients with recurrence of DCIS (n = 9) and those without (n = 36). CONCLUSION: The findings reported here suggest that, although S100A7 may not be a marker for recurrence of DCIS, it is associated with poor prognostic markers in DCIS and may influence progression of breast carcinoma through its interaction with and influence on Jab1
    corecore