83 research outputs found

    Dynamic modulation of phosphoprotein expression in ovarian cancer xenograft models

    Get PDF
    The authors thank Medical Research Scotland and the Scottish Funding Council. This work was su pported by Medical Research Scotland [FRG353 to V.A.S.]; the FP7 -­‐ Directorate -­‐ General for Research and Innovation of the European Commission [EU HEALTH -­‐ F4 -­‐ 2012 -­‐ 305033 to Coordinating Action Systems Medicine -­‐ D.J.H.]; the Chief Scientist Office of Scotland [D.J.H.], the Scottish Funding Council [D.J.H. and S.P.L.]. Health Canada Scholarship (Indspire) [KEF], Scottish Overseas Research Student Award Scheme (University of Edinburgh)[KEF] and the Three Fires Award (Wikwemikong Board of Education)[KEF].Background: The dynamic changes that occur in protein expression after treatment of a cancer in vivo are poorly described. In this study we measure the effect of chemotherapy over time on the expression of a panel of proteins in ovarian cancer xenograft models. The objective was to identify phosphoprotein and other protein changes indicative of pathway activation that might link with drug response. Methods: Two xenograft models, platinum-responsive OV1002 and platinum-unresponsive HOX424, were used. Treatments were carboplatin and carboplatin-paclitaxel. Expression of 49 proteins over 14 days post treatment was measured by quantitative immunofluorescence and analysed by AQUA . Results: Carboplatin treatment in the platinum-sensitive OV1002 model triggered up-regulation of cell cycle, mTOR and DDR pathways, while at late time points WNT, invasion , EMT and MAPK pathways were modulated. Estrogen receptor-alpha (ESR1) and ERBB pathways were down-regulated early, within 24h from treatment administration. Combined carboplatin-paclitaxel treatment triggered a more extensive response in the OV1002 model modulating expression of 23 of 49 proteins. Therefore the cell cycle and DDR pathways showed similar or more pronounced changes than with carboplatin alone . In addition to expression of pS6 and pERK increasing, components of the AKT pathway were modulated with pAKT increasing while its regulator PTEN was down-regulated early. WNT signaling, EMT and invasion markers were modulated at later time points. Additional pathways were also observed with the NFκB and JAK/STAT pathways being up-regulated. ESR1 was down-regulated as was HER4, while further protein members of the ERB B pathway were upregulated late. By contrast, in the carboplatin-unresponsive HOX 424 xenograft, carboplatin only modulated expression of MLH1 while carboplatin-paclitaxel treatment modulated ESR1 and pMET.Publisher PDFPeer reviewe

    Evaluation of the dual mTOR / PI3K inhibitors Gedatolisib (PF-05212384) and PF-04691502 against ovarian cancer xenograft models

    Get PDF
    We are grateful to Wyeth/Pfizer (ONC-EU-150) and to the Scottish Funding Council (SRDG HR07005) for support of this study.This study investigated the antitumour effects of two dual mTOR/PI3K inhibitors, gedatolisib (WYE-129587/PKI-587/PF-05212384) and PF-04691502 against a panel of six human patient derived ovarian cancer xenograft models. Both dual mTOR/PI3K inhibitors demonstrated antitumour activity against all xenografts tested. The compounds produced tumour stasis during the treatment period and upon cessation of treatment, tumours re-grew. In several models, there was an initial rapid reduction of tumour volume over the first week of treatment before tumour stasis. No toxicity was observed during treatment. Biomarker studies were conducted in two xenograft models; phospho-S6 (Ser235/236) expression (as a readout of mTOR activity) was reduced over the treatment period in the responding xenograft but expression increased to control (no treatment) levels on cessation of treatment. Phospho-AKT (Ser473) expression (as a readout of PI3K) was inhibited by both drugs but less markedly so than phospho-S6 expression. Initial tumour volume reduction on treatment and regrowth rate after treatment cessation was associated with phospho-S6/total S6 expression ratio. Both drugs produced apoptosis but minimally influenced markers of proliferation (Ki67, phospho-histone H3). These results indicate that mTOR/PI3K inhibition can produce broad spectrum tumour growth stasis in ovarian cancer xenograft models during continuous chronic treatment and this is associated with apoptosis.Publisher PDFPeer reviewe

    BICEPP: an example-based statistical text mining method for predicting the binary characteristics of drugs

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The identification of drug characteristics is a clinically important task, but it requires much expert knowledge and consumes substantial resources. We have developed a statistical text-mining approach (BInary Characteristics Extractor and biomedical Properties Predictor: BICEPP) to help experts screen drugs that may have important clinical characteristics of interest.</p> <p>Results</p> <p>BICEPP first retrieves MEDLINE abstracts containing drug names, then selects tokens that best predict the list of drugs which represents the characteristic of interest. Machine learning is then used to classify drugs using a document frequency-based measure. Evaluation experiments were performed to validate BICEPP's performance on 484 characteristics of 857 drugs, identified from the Australian Medicines Handbook (AMH) and the PharmacoKinetic Interaction Screening (PKIS) database. Stratified cross-validations revealed that BICEPP was able to classify drugs into all 20 major therapeutic classes (100%) and 157 (of 197) minor drug classes (80%) with areas under the receiver operating characteristic curve (AUC) > 0.80. Similarly, AUC > 0.80 could be obtained in the classification of 173 (of 238) adverse events (73%), up to 12 (of 15) groups of clinically significant cytochrome P450 enzyme (CYP) inducers or inhibitors (80%), and up to 11 (of 14) groups of narrow therapeutic index drugs (79%). Interestingly, it was observed that the keywords used to describe a drug characteristic were not necessarily the most predictive ones for the classification task.</p> <p>Conclusions</p> <p>BICEPP has sufficient classification power to automatically distinguish a wide range of clinical properties of drugs. This may be used in pharmacovigilance applications to assist with rapid screening of large drug databases to identify important characteristics for further evaluation.</p

    Folding Circular Permutants of IL-1β: Route Selection Driven by Functional Frustration

    Get PDF
    Interleukin-1β (IL-1β) is the cytokine crucial to inflammatory and immune response. Two dominant routes are populated in the folding to native structure. These distinct routes are a result of the competition between early packing of the functional loops versus closure of the β-barrel to achieve efficient folding and have been observed both experimentally and computationally. Kinetic experiments on the WT protein established that the dominant route is characterized by early packing of geometrically frustrated functional loops. However, deletion of one of the functional loops, the β-bulge, switches the dominant route to an alternative, yet, as accessible, route, where the termini necessary for barrel closure form first. Here, we explore the effect of circular permutation of the WT sequence on the observed folding landscape with a combination of kinetic and thermodynamic experiments. Our experiments show that while the rate of formation of permutant protein is always slower than that observed for the WT sequence, the region of initial nucleation for all permutants is similar to that observed for the WT protein and occurs within a similar timescale. That is, even permutants with significant sequence rearrangement in which the functional-nucleus is placed at opposing ends of the polypeptide chain, fold by the dominant WT “functional loop-packing route”, despite the entropic cost of having to fold the N- and C- termini early. Taken together, our results indicate that the early packing of the functional loops dominates the folding landscape in active proteins, and, despite the entropic penalty of coalescing the termini early, these proteins will populate an entropically unfavorable route in order to conserve function. More generally, circular permutation can elucidate the influence of local energetic stabilization of functional regions within a protein, where topological complexity creates a mismatch between energetics and topology in active proteins

    Analysis of early mesothelial cell responses to Staphylococcus epidermidis isolated from patients with peritoneal dialysis-associated peritonitis

    Get PDF
    The major complication of peritoneal dialysis (PD) is the development of peritonitis, an infection within the abdominal cavity, primarily caused by bacteria. PD peritonitis is associated with significant morbidity, mortality and health care costs. Staphylococcus epidermidis is the most frequently isolated cause of PD-associated peritonitis. Mesothelial cells are integral to the host response to peritonitis, and subsequent clinical outcomes, yet the effects of infection on mesothelial cells are not well characterised. We systematically investigated the early mesothelial cell response to clinical and reference isolates of S. epidermidis using primary mesothelial cells and the mesothelial cell line Met-5A. Using an unbiased whole genome microarray, followed by a targeted panel of genes known to be involved in the human antibacterial response, we identified 38 differentially regulated genes (adj. p-value &lt; 0.05) representing 35 canonical pathways after 1 hour exposure to S. epidermidis. The top 3 canonical pathways were TNFR2 signaling, IL-17A signaling, and TNFR1 signaling (adj. pvalues of 0.0012, 0.0012 and 0.0019, respectively). Subsequent qPCR validation confirmed significant differences in gene expression in a number of genes not previously described in mesothelial cell responses to infection, with heterogeneity observed between clinical isolates of S. epidermidis, and between Met-5A and primary mesothelial cells. Heterogeneity between different S. epidermidis isolates suggests that specific virulence factors may play critical roles in influencing outcomes from peritonitis. This study provides new insights into early mesothelial cell responses to infection with S. epidermidis, and confirms the importance of validating findings in primary mesothelial cells

    Text Mining Improves Prediction of Protein Functional Sites

    Get PDF
    We present an approach that integrates protein structure analysis and text mining for protein functional site prediction, called LEAP-FS (Literature Enhanced Automated Prediction of Functional Sites). The structure analysis was carried out using Dynamics Perturbation Analysis (DPA), which predicts functional sites at control points where interactions greatly perturb protein vibrations. The text mining extracts mentions of residues in the literature, and predicts that residues mentioned are functionally important. We assessed the significance of each of these methods by analyzing their performance in finding known functional sites (specifically, small-molecule binding sites and catalytic sites) in about 100,000 publicly available protein structures. The DPA predictions recapitulated many of the functional site annotations and preferentially recovered binding sites annotated as biologically relevant vs. those annotated as potentially spurious. The text-based predictions were also substantially supported by the functional site annotations: compared to other residues, residues mentioned in text were roughly six times more likely to be found in a functional site. The overlap of predictions with annotations improved when the text-based and structure-based methods agreed. Our analysis also yielded new high-quality predictions of many functional site residues that were not catalogued in the curated data sources we inspected. We conclude that both DPA and text mining independently provide valuable high-throughput protein functional site predictions, and that integrating the two methods using LEAP-FS further improves the quality of these predictions

    Relationship between differentially expressed mRNA and mRNA-protein correlations in a xenograft model system

    Get PDF
    This work was supported by Medical Research Scotland (FRG353 to VAS), the FP7- Directorate-General for Research and Innovation of the European Commission (EU HEALTHF4-2012-305033 to Coordinating Action Systems Medicine to DJH); the Chief Scientist Office of Scotland (to DJH) and the Scottish Funding Council (to DJH and SPL).Differential mRNA expression studies implicitly assume that changes in mRNA expression have biological meaning, most likely mediated by corresponding changes in protein levels. Yet studies into mRNA-protein correspondence have shown notoriously poor correlation between mRNA and protein expression levels, creating concern for inferences from only mRNA expression data. However, none of these studies have examined in particular differentially expressed mRNA. Here, we examined this question in an ovarian cancer xenograft model. We measured protein and mRNA expression for twenty-nine genes in four drug-treatment conditions and in untreated controls. We identified mRNAs differentially expressed between drug-treated xenografts and controls, then analysed mRNA-protein expression correlation across a five-point time-course within each of the four experimental conditions. We evaluated correlations between mRNAs and their protein products for mRNAs differentially expressed within an experimental condition compared to those that are not. We found that differentially expressed mRNAs correlate significantly better with their protein product than non-differentially expressed mRNAs. This result increases confidence for the use of differential mRNA expression for biological discovery in this system, as well as providing optimism for the usefulness of inferences from mRNA expression in general.Publisher PDFPeer reviewe

    Establishment of a 3D In Vitro Model to Accelerate the Development of Human Therapies against Corneal Diabetes

    Get PDF
    The authors thank Dr. John M Asara, Min Yuan, and Susanne Breitkopf for their technical help with metabolomics experiments, Dr. Ben Fowler for his technical help with TEM experiments and also Tina B McKay for many thoughtful discussions and scientific insights during the study.Purpose To establish an in vitro model that would mirror the in vivo corneal stromal environment in diabetes (DM) patients. Methods Human corneal fibroblasts from Healthy (HCFs), Type 1DM (T1DM) and Type 2DM (T2DM) donors were isolated and cultured for 4 weeks with Vitamin C stimulation in order to allow for extracellular matrix (ECM) secretion and assembly. Results Our data indicated altered cellular morphology, increased cellular migration, increased ECM assembly, and severe mitochondrial damage in both T1DM and T2DMs when compared to HCFs. Furthermore, we found significant downregulation of Collagen I and Collagen V expression in both T1DM and T2DMs. Furthermore, a significant up regulation of fibrotic markers was seen, including α-smooth muscle actin in T2DM and Collagen III in both T1DM and T2DMs. Metabolic analysis suggested impaired Glycolysis and Tricarboxylic acid cycle (TCA) pathway. Conclusion DM has significant effects on physiological and clinical aspects of the human cornea. The benefits in developing and fully characterizing our 3D in vitro model are enormous and might provide clues for the development of novel therapeutics.Yeshttp://www.plosone.org/static/editorial#pee
    corecore