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Abstract

The major complication of peritoneal dialysis (PD) is the development of peritonitis, an infec-

tion within the abdominal cavity, primarily caused by bacteria. PD peritonitis is associated

with significant morbidity, mortality and health care costs. Staphylococcus epidermidis is the

most frequently isolated cause of PD-associated peritonitis. Mesothelial cells are integral to

the host response to peritonitis, and subsequent clinical outcomes, yet the effects of infec-

tion on mesothelial cells are not well characterised. We systematically investigated the early

mesothelial cell response to clinical and reference isolates of S. epidermidis using primary

mesothelial cells and the mesothelial cell line Met-5A. Using an unbiased whole genome

microarray, followed by a targeted panel of genes known to be involved in the human anti-

bacterial response, we identified 38 differentially regulated genes (adj. p-value < 0.05) rep-

resenting 35 canonical pathways after 1 hour exposure to S. epidermidis. The top 3

canonical pathways were TNFR2 signaling, IL-17A signaling, and TNFR1 signaling (adj. p-

values of 0.0012, 0.0012 and 0.0019, respectively). Subsequent qPCR validation confirmed

significant differences in gene expression in a number of genes not previously described in

mesothelial cell responses to infection, with heterogeneity observed between clinical iso-

lates of S. epidermidis, and between Met-5A and primary mesothelial cells. Heterogeneity

between different S. epidermidis isolates suggests that specific virulence factors may play

critical roles in influencing outcomes from peritonitis. This study provides new insights into

early mesothelial cell responses to infection with S. epidermidis, and confirms the impor-

tance of validating findings in primary mesothelial cells.
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Introduction

The prevalence of end stage kidney disease (ESKD) is increasing due to an aging population

and a rise in the incidence of diabetes and hypertension [1–3]. It has been estimated that 1.9

million people worldwide are undergoing renal replacement therapy [1], which is associated

with significant healthcare costs [4]. Peritoneal Dialysis (PD) is a commonly used treatment

modality for ESKD that requires a permanent catheter placed into the abdomen. The most fre-

quent complication of PD is the development of peritonitis [5, 6], an infection within the abdo-

men, which is responsible for the majority of treatment failures and significant mortality [7].

Gram positive microorganisms account for 60–70% of PD peritonitis cases, with coagulase-

negative staphylococci (CoNS) the predominant pathogens [8, 9]. S. epidermidis account for

approximately 50-70% of CoNS causing PD peritonitis [10–12].

The initial phase of the host response to peritonitis is mediated by mesothelial cells–a spe-

cialised single cell layer that covers the visceral and parietal surfaces of organs within the

abdominal and chest cavities [13]. Mesothelial cells are highly metabolically active, recognize

pathogen-associated molecular pathways, and can produce numerous cytokines [14, 15].

Despite the importance of these cells, few studies have assessed how mesothelial cells respond

to pathogens causing peritonitis and most have been limited to analysis of individual signalling

molecules or genes of interest.

In this study, we demonstrate that S. epidermidis induces a complex series of changes in

gene transcription in mesothelial cells within 1 hour of bacterial exposure. An overview of the

experimental approach is shown in Fig 1. These changes affect pathways associated with

tumor necrosis factor (TNF) and Toll-like receptor (TLR) signaling. Mesothelial cell responses

to S. epidermidis infection vary between isolates and between primary cells and the Met-5A

mesothelial cell line for a number of key genes, including TNF. These findings provide new

insights into the early host response to PD peritonitis and highlight the importance of validat-

ing data from mesothelial cell lines in primary mesothelial cells.

Materials and methods

Bacterial strains

S. epidermidis reference isolates ATCC1 14990 and ATCC1 12228 (American Type Culture

Collection (ATCC), Manassas, VA, USA), and clinical S. epidermidis isolates cultured from PD

effluent (C015 to C019) were provided by PathWest Laboratory Medicine, Western Australia.

Identities were confirmed by MALDI-TOF using a MALDI Biotyper Reference Library (Bru-

ker Daltonics, Bremen, Germany) prior to use. Bacteria were grown on 5% sheep blood agar

(BA) plates at 37˚C/5% CO2, and a single colony chosen for expansion overnight in Luria-Ber-

tani broth (LB; LB-Miller, BD Difco™, Cat. No. 244620) at 37˚C at 200 rpm. Standardised bac-

terial suspensions were prepared to a density 1.0–1.5 x 108 colony forming units (cfu)/mL

using the approximation 0.1 OD600 = 1 x 108 cfu/mL using a spectrophotometer (NanoPhot-

ometer™, Implen, Munich, Germany), or to 0.5 McFarland Standard (~1.5 x 108 cfu/mL) using

a Sensititre™ Nephelometer (Thermo Fisher Scientific). Viable counts were determined by

serial dilution in phosphate buffered saline (PBS) and plating on BA plates.

Cell culture conditions

Human primary mesothelial cells, derived from adult omental tissue and pooled from multiple

donors, were obtained from Zen-Bio Inc. (Research Triangle Park, NC, USA; Cat. No.

DMES-F-SL). During resuscitation from liquid nitrogen, primary mesothelial cells were cul-

tured in Mesothelial Cell Growth Medium (Zen-Bio Inc.; Cat. No. MSO-1), consisting of

Early mesothelial cell responses to S. epidermidis causing PD peritonitis

PLOS ONE | https://doi.org/10.1371/journal.pone.0178151 May 24, 2017 2 / 18

conjunction with the Charlies Foundation for

Research, http://www.scgh.health.wa.gov.au/

Research/RACFunding.html. The funders had no

role in study design, data collection and analysis,

decision to publish, or preparation of the

manuscript.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0178151
http://www.scgh.health.wa.gov.au/Research/RACFunding.html
http://www.scgh.health.wa.gov.au/Research/RACFunding.html


Medium 199, fetal bovine serum (FBS), human epidermal growth factor, penicillin, streptomy-

cin, and amphotericin B (proprietary formula). All gene expression experiments were con-

ducted in Dulbecco’s Modified Eagle’s Medium (DMEM) containing 4500 mg/L glucose

(Sigma-Aldrich, St. Louis, MO USA) and supplemented with 4 mM L-glutamine (Sigma-

Aldrich), 200U/mL penicillin/0.2 mg/mL streptomycin (Sigma-Aldrich), 15% FBS (Bovogen

Biologicals Pty Ltd, Keilor East, Victoria, Australia; Cat. No. SFBS-F) and 0.4 μg/mL hydrocor-

tisone (Sigma-Aldrich) [16]. Met-5A mesothelial cells (ATCC1 CRL-9444) were cultured in

the same formulation of DMEM as the primary mesothelial cells, but without hydrocortisone

and using 10% FBS [17].

Bacterial challenge conditions

Confluent cells were serum starved in the absence of antibiotics for 18 hours prior to incuba-

tion with bacteria. Standardised bacterial suspensions (~1 x 108 cfu/mL) were diluted 1/10 in

the appropriate antibiotic-free cell culture media to give ~1 x 107 cfu/mL, of which 2 mL was

co-incubated with cells for 1 hour at 37˚C/5% CO2. For dose-response experiments, bacterial

suspensions were standardized to ~1 x 109 cfu/mL, serially diluted in LB broth then diluted
1/10 in cell-culture media, as described above. Met-5A cells were also exposed to lipoteichoic

acid (LTA) from Staphylococcus aureus (Sigma; Cat. No. L2515), the primary component of

the Gram positive cell wall, at 10 μg/mL in antibiotic-free DMEM. All test conditions were set

up in triplicate in 6 well plates (Falcon1 by Corning, Corning NY USA). Control wells con-

tained mesothelial cells with media alone, or media containing 10% LB.

RNA isolation from primary mesothelial cells and the Met-5A cell line

Following co-incubation with bacteria, mesothelial cell monolayers were washed with PBS

pre-warmed to 37˚C. Mesothelial cells for RT2 PCR array and qPCR experiments were treated

with RNAprotect Cell Reagent (Qiagen GmbH, Hilden, Germany), with 300 μL PBS and 1.5

mL RNAprotect added per well. RNA was isolated using the RNeasy Plus Mini kit (Qiagen)

with gDNA Eliminator spin columns. RNA was quantified using the Caliper LabChip GXII

(Perkin Elmer, Waltham, MA, USA) at the Australian Genome Research Facility (AGRF),

Perth, Australia or a NanoDrop 2000 (Thermo Fisher Scientific Inc., Wilmington, DE, USA).

RNA quality was determined by assessment of A260/A280 and A260/A230 ratios.

Fig 1. Flow chart demonstrating the experimental approach. Experimental steps are shown in dark grey

and analysis and experimental questions are shown in light grey. IPA = Ingenuity Pathway Analysis.

https://doi.org/10.1371/journal.pone.0178151.g001
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Viability of mesothelial cells by flow cytometry

Following co-incubation with bacteria, cell monolayers were washed with warm PBS and har-

vested using a 0.05% trypsin-EDTA solution (Sigma-Aldrich). Cells were stained with LIVE/

DEAD1 Fixable Near-IR Dead Cell Stain Kit (Thermo Fisher Scientific) as per the manufac-

turer’s protocols, fixed in 4% paraformaldehyde, and acquired in technical triplicate using a

FACSCanto™ II flow cytometer (BD Biosciences, Franklin Lakes, NJ, USA). Data were

exported in FCS version 3.1, and analysis was completed using FlowJo Version 10.0.08 (FlowJo

LLC., Ashland OR USA) and Prism Version 6.0b (GraphPad Software, San Diego CA USA).

Comparisons between unexposed and bacteria-exposed samples were made using unpaired t-

tests.

Illumina HT-12 v4 human genome microarray

RNA samples (biological triplicates) from S. epidermidis-infected primary mesothelial cells

(and controls) that met quality control requirements were sent to the AGRF, Melbourne, Aus-

tralia for microarray processing using the HT-12 v4 human genome microarray (Illumina,

Inc., San Diego, CA USA). A total hybridisation volume of 15 μL was prepared for each sam-

ple, and loaded per microarray on the Ilumina HumanHT-12 Expression BeadChip. Hybridi-

sation was at 58˚C for 16 hours on a rocking platform. Following hybridisation, samples were

washed as per manufacturer’s instructions, coupled with Cy3, and scanned in the Illumina

iScan Reader, with output produced by GenomeStudio version 1.9.0. Using R (version 3.1.2)

[18]. The data underwent quality control through the Bioconductor [19] packages arrayQuali-
tyMetrics [20], made4 [21], lumi [22] and limma [23]. The detectable probe ratio of each probe

was calculated, and all probes with a detection p-value of less than 0.01 were removed, and rel-

ative quality weights were estimated for each microarray. A linear model was fitted contrasting

the control samples relative to the S. epidermidis samples, resulting in differentially expressed

genes under a false discovery rate of 5%. Significantly differentially regulated genes had a Ben-

jamini-Hochberg adjusted p-value< 0.05 [24]. Microarray data files for S. epidermidis
ATCC1 14990 and S. epidermidis ATCC1 12228 have been deposited at https://

researchdataonline.research.uwa.edu.au/handle/123456789/3381.

Human antibacterial response RT2 PCR array

0.5 μg RNA from primary mesothelial cells and Met-5A cells exposed to 107 cfu/mL bacteria,

LTA (10 μg/mL) or controls for 1 hour was processed for the Qiagen ‘Human Antibacterial

Response’ RT2 PCR array (Cat. No. PAHS-148Z) according to the manufacturer’s instructions.

Real-time PCR cycling was performed using a StepOnePlus™ Real-Time PCR System (Thermo

Fisher Scientific). Data were normalised to the reference gene, RPLP0. Data were presented as

fold change, with>2-fold considered up-regulation and<-2-fold considered down-regula-

tion. RT2 PCR array data have been deposited at https://researchdataonline.research.uwa.edu.

au/handle/123456789/3381.

qPCR validation of gene expression

cDNA was synthesized from 1 μg total RNA using the iScript™ cDNA Synthesis kit (Bio-Rad;

Cat. No. 1708891) in a 20 μL reaction volume, according to the manufacturer’s instructions.

Gene expression findings of key genes identified by microarray and RT2 PCR arrays were vali-

dated by qPCR using a StepOnePlus™ real-time PCR system (Thermo Fisher Scientific), wet-lab

validated PrimePCR™ Gene Expression Probe assays (Bio-Rad) and were conducted following

MIQE guidelines [25]. Genes assayed by qPCR were TNF (unique assay ID dHsaCPE5190842;
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Bio-Rad), TLR4 (dHsaCPE5030581), CCL5 (dHsaCPE5050154), ZFP36 (dHsaCPE5191899),

EDN1 (dHsaCPE5053386) and ITLN1 (dHsaCPE5041777). The reference gene was RPLP0

(dHsaCPE5031575). Samples were assayed in a minimum of biological triplicates, assayed in

technical triplicate, and data were analysed using the comparative Ct method (ΔΔCt), with

results reported as the fold-change in gene expression (2-ΔΔCt) relative to the DMEM/10% LB

control.

Analysis of differentially expressed genes using Ingenuity Pathway

Analysis

Genes identified by microarray analysis as significantly differentially expressed (fold change >

±1.5, adj. p-value< 0.05) were subjected to Qiagen’s Ingenuity1 Pathway Analysis (IPA1, Qia-

gen Redwood City, www.qiagen.com/ingenuity, IPA v1.07) to determine canonical pathways,

upstream regulators and networks significantly enriched for these genes. Ten of the 38 differen-

tially expressed genes were excluded from IPA (5 duplicate genes, 4 uncharacterized genes, and

1 gene below the IPA default criteria for pathway analysis). The remaining 28 genes were

mapped using the Hugo Gene Nomenclature Committee (HGNC) database and expression dif-

ferences were uploaded to IPA as fold changes. The Core Analysis function was performed and

a right-tailed Fisher’s exact test was used to calculate the significance of each pathway or biolog-

ical function. A Benjamini-Hochberg adjusted p< 0.01 was treated as significant [24].

Results

Mesothelial cell viability following bacterial infection

In vitro cultured mesothelial monolayers were exposed to 107 cfu/mL of five clinical isolates of

S. epidermidis, two reference isolates of S. epidermidis and LTA (10 μg/mL) for 1 hour. Follow-

ing exposure, 0.5–7.5% of cells assayed were non-viable (Fig 2), with no significant (p< 0.05)

difference in mesothelial cell viability between any of the samples and the media control.

Therefore, a 1 hour exposure with 107 cfu/mL S. epidermidis was selected for gene expression

studies to maximise the strength of the bacterial challenge signal whilst avoiding enrichment

of apoptotic/necrotic gene expression pathways, and limiting variation induced by growth of

the bacterial inoculum.

Primary mesothelial cell human genome microarray

Nineteen significantly differentially regulated genes (adj. p-value< 0.05) were identified in

each S. epidermidis isolate (for a total of 38 genes of interest), with 25 genes up-regulated and

13 genes down-regulated (Tables 1 and 2, respectively). Four genes were significantly differen-

tially regulated in response to both S. epidermidis isolates: MAP3K5, NFKBIA and ZFP36 (up-

regulated), and ITLN1 (down-regulated) (Fig 3, and Tables 1 and 2).

Pathway analysis of differentially expressed genes

To ascertain the relationships between genes identified by microarray, and aid in selection of

further genes for study, twenty-eight genes that were significantly differentially expressed in

primary mesothelial cells following S. epidermidis exposure were analysed using Qiagen’s Inge-

nuity Pathway Analysis (IPA) software. Ten of the 38 differentially expressed genes were

excluded from IPA analysis, as described in the Materials and Methods. Thirty-five canonical

pathways were significantly represented (adj. p-value< 0.01) in our dataset (S1 Table), with

the top 15 canonical pathways shown in Fig 4. The three most significant pathways were

TNFR2 signaling, IL-17A Signaling in Fibroblasts, and TNFR1 signaling, with other notable
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pathways including TLR signaling, and apoptosis signaling. TNF was both a differentially

expressed gene, and an upstream regulator of 10 of the differentially expressed genes (CXCL2,

EDN1, EGR1, FOS, HAS1, IER3, MAP3K5, MYLK, NFKBIA, ZFP36) as determined by micro-

array (Fig 5).

RT2 human antibacterial response PCR array

Following analysis of the microarray data, the Qiagen RT2 human antibacterial response PCR

array was used to further assess changes in gene expression. Each RT2 PCR array contained 84

Fig 2. Viability of Met-5A and primary mesothelial cells exposed to S. epidermidis and lipoteichoic acid. Confluent Met-5A

mesothelial cells were exposed to 107 cfu/mL of two S. epidermidis reference isolates (ATCC® 14990 and ATCC® 12228), five S.

epidermidis clinical isolates from PD peritonitis patients (C015, C016, C017, C018, C019) and 10 μg/mL lipoteichoic acid (LTA) for 1 hour at

37˚C. Confluent primary mesothelial cells were exposed to 107 cfu/mL of the clinical S. epidermidis isolate C016. Viability was determined

using flow cytometry and a LIVE/DEAD® Fixable Near-IR Dead Cell Stain, and data reported as the mean percentage of cell death across a

minimum of biological triplicates (error bars are standard deviation). There was no statistically significant (p < 0.05) difference in the percent

of cell death between any of the samples and the media control.

https://doi.org/10.1371/journal.pone.0178151.g002
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genes and across the conditions tested in Met-5A cells, 478 of the 588 genes were expressed in

the 7 S. epidermidis arrays. There were 36 genes (7.5% of the 478 genes) up-regulated (3 to 26

fold), and 32 genes (6.7%) down-regulated (3 to 33 fold). 36 genes were differentially regulated

(>2-fold) in two or more S. epidermidis isolates (Fig 6). Twelve genes were differentially regu-

lated in a single isolate, 27 genes did not show a change in expression, and no expression data

was available for 9 genes, suggesting these genes are not expressed by mesothelial cells under

the conditions tested.

Primary mesothelial cells showed lower magnitude changes in gene expression 1 hour after

infection with S. epidemidis relative to Met-5A cells. There were 145 genes expressed across

two reference isolates, with 4 genes (2.8%) up-regulated 3 to 19 fold, and 2 genes (1.3%) down-

regulated 3 to 11 fold. TNF was the most highly up-regulated gene in primary mesothelial

cells. Results for TNF expression in Met-5As differed significantly from primary mesothelial

cells, with TNF consistently down-regulated in Met-5A cells (Fig 6).

Table 1. Primary mesothelial cell genes significantly up-regulated by S. epidermidis at 1 hour.

Isolate1 Target ID Adjusted p-value2 B value (Log-Odds)3 log2FC4

Se2 FOS 5.51E-07 13.571796 1.879734

Se2 SCARNA9 2.89E-06 11.648745 2.086159

Se2 ZFP365 4.77E-06 11.078705 1.162754

Se2 NFKBIA 9.36E-06 10.306066 0.978205

Se2 EDN1 1.70E-05 9.644657 1.441711

Se2 EGR1 9.82E-05 8.060662 0.963757

Se1 CNGB16 4.17E-03 5.918297 1.071359

Se1 FBXO32 4.17E-03 5.705710 0.909449

Se2 CYP4B1 4.78E-03 4.493523 1.235685

Se2 MAP3K5 4.78E-03 4.511479 1.120886

Se1 CNGB16 1.36E-02 4.105234 1.730148

Se1 MAP3K5 1.36E-02 4.026606 1.076436

Se1 VNN3 1.36E-02 3.953305 1.132151

Se1 LOC644422 1.57E-02 3.713648 1.341445

Se2 IER3 2.46E-02 3.026337 0.614906

Se2 NFKBIZ 2.68E-02 2.809053 0.998651

Se2 CXCL2 2.74E-02 2.613680 1.670304

Se2 LOC338758 2.74E-02 2.642575 0.978880

Se1 CXCL12 2.82E-02 2.856812 1.023841

Se1 ZFP36 2.82E-02 3.086259 0.733774

Se2 TNF 2.87E-02 2.518083 2.779602

Se2 LOH3CR2A 3.25E-02 2.261506 1.014301

Se1 NFKBIA 3.26E-02 2.594352 0.618322

Se1 KLF2 4.06E-02 2.140259 0.693826

Se1 MYLK 4.06E-02 2.208976 1.189960

1 Se1: S. epidermidis ATCC® 14990. Se2: S. epidermidis ATCC® 12228.
2 Benjamini-Hochberg adjusted p-value < 0.05 is considered statistically significant.
3 The B value is the Log-Odds that the gene is differentially expressed.
4 log2FC = log2 Fold Change
5 Genes shown in bold font were significantly up-regulated by both S. epidermidis isolates.
6 CNGB1 was represented on the microarray twice, with both probes significantly up-regulated by Se1.

https://doi.org/10.1371/journal.pone.0178151.t001
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Table 2. Primary mesothelial cell genes significantly down-regulated by S. epidermidis at 1 hour.

Isolate1 Target ID Adjusted p-value2 B value (Log-Odds)3 log2FC4

Se1 KIAA1644 2.57E-03 7.065969 -1.088678

Se2 ANG 3.74E-03 4.908400 -0.905677

Se1 ITLN15 1.36E-02 4.356518 -0.947596

Se2 SERTAD1 2.68E-02 2.851482 -0.685160

Se2 LOC645638 2.74E-02 2.592000 -0.690900

Se1 HAS1 2.82E-02 2.887356 -0.735746

Se1 PAQR9 2.82E-02 2.941605 -0.983196

Se1 ERF 3.09E-02 2.706018 -0.836912

Se2 BAIAP2 3.25E-02 2.251291 -0.811500

Se2 ITLN15 3.25E-02 2.247736 -0.823852

Se1 LOC100129975 3.74E-02 2.417200 -1.057123

Se1 LMCD1 4.06E-02 2.161595 -0.636474

Se1 SLC20A1 4.06E-02 2.288993 -0.517624

1 Se1: S. epidermidis ATCC® 14990. Se2: S. epidermidis ATCC® 12228.
2 Benjamini-Hochberg adjusted p-value < 0.05 is considered statistically significant.
3 The B value is the Log-Odds that the gene is differentially expressed.
4 log2FC = log2 Fold Change
5 ITLN1 was significantly down-regulated by both S. epidermidis isolates.

https://doi.org/10.1371/journal.pone.0178151.t002

Fig 3. Volcano plots showing differentially expressed genes following incubation of primary mesothelial cells with S. epidermidis

isolates for 1 hour. Volcano plots showing differentially regulated genes (adj. p-value < 0.05) following exposure of primary mesothelial

cells to S. epidermidis ATCC® 14990 (A) or S. epidermidis ATCC® 12228 (B). A positive Log Fold Change indicates up-regulation; a negative

Log Fold Change indicates down-regulation. The Log Odds (B value) is the log of the probability that a gene is differentially expressed. A Log

Odds value of 0 corresponds to a 50–50 chance that the gene is differentially expressed.

https://doi.org/10.1371/journal.pone.0178151.g003
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Fig 4. Canonical pathways represented by the differentially expressed genes following incubation of primary mesothelial cells

with S. epidermidis for 1 hour. 28 differentially expressed genes identified by microarray following incubation of S. epidermidis with

primary mesothelial cells were analysed using Ingenuity Pathway Analysis (IPA) and 35 canonical pathways were represented in our

dataset. The top 15 canonical pathways are shown above, with the full list of canonical pathways shown in S1 Table. A -log(B-H p-value)

(shown in gold) of >2 represents data with an adjusted p-value < 0.01 (threshold for significance shown as a vertical line at 2.00). The ratio

(shown in purple) indicates the proportion of differentially expressed genes relative to the total number of genes in each pathway.

https://doi.org/10.1371/journal.pone.0178151.g004
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qPCR validation

The selection of genes for qPCR validation was determined by a multi-factorial approach, as

outlined in Fig 1. Criteria for inclusion were: magnitude of expression fold change across

microarray and RT2 PCR array experiments, consistency of differential expression across con-

ditions, differences between Met-5A and primary mesothelial cell responses, biological plausi-

bility (from existing literature), and potential consequence in the context of PD peritonitis.

Based on these criteria, 6 genes were selected for further investigation: CCL5 (RANTES),

TLR4, TNF, ZFP36, EDN1 and ITLN1. Dose response experiments in primary and Met-5A

mesothelial cells were conducted using the clinical S. epidermidis isolate C016 at 108 cfu/mL,

106 cfu/mL and 104 cfu/mL for 1 hour (Table 3).

Gene expression in primary mesothelial cells exposed to high doses of S. epidermidis was

consistent between microarray studies, RT2 PCR arrays and qPCR for CCL5, ZFP36 and

EDN1 (up-regulated) and TLR4 and ITLN1 (down-regulated). Expression of TNF showed a

dose-dependent response in primary mesothelial cells, with 14-fold to 19-fold increases in

TNF expression with high doses of S. epidermidis. Expression of CCL5 by Met-5A mesothelial

cells was in agreement with primary cells. However aberrant expression of TLR4 (inconsistent

results) and TNF (opposing results) in Met-5A mesothelial cells was noted.

Discussion

Peritonitis caused by coagulase-negative staphylococci is a common complication of peritoneal

dialysis therapy and is associated with significant morbidity and mortality [8, 26]. Mesothelial

cells are a first line of defense in the peritoneal cavity and the response of these cells to the

Fig 5. TNF is an upstream regulator of ten of the differentially regulated genes. The connections

between nodes represent direct (solid lines) and indirect (dashed lines) relationships between genes, as

supported by information in the IPA database. Up-regulated genes are shaded red, and down-regulated

genes are shaded blue, with the intensity of the colour indicative of the magnitude of regulation. Feedback

loops indicate auto regulation.

https://doi.org/10.1371/journal.pone.0178151.g005
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Fig 6. Changes in mesothelial cell gene expression in response to S. epidermidis. Confluent Met-5A or

primary mesothelial cells were exposed to 107 cfu/mL isolates of S. epidermidis or 10 μg/mL lipoteichoic acid

(LTA) for 1 hour. Changes in gene expression were analysed using the RT2 human antibacterial response

PCR array. 36 of the 84 genes on the RT2 panel were differentially regulated (>2-fold) in�2 S. epidermidis

isolates and are shown grouped by category.

https://doi.org/10.1371/journal.pone.0178151.g006
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presence of invading pathogens influences the subsequent activation and recruitment of

inflammatory cells and soluble mediators [27]. Despite the clinical importance of coagulase-

negative staphylococci, particularly S. epidermidis, in PD peritonitis, few studies have directly

assessed how mesothelial cells respond to these pathogens. Using an unbiased whole transcrip-

tome approach, coupled to a targeted gene panel with subsequent qPCR validation, we have

demonstrated the complexity of the early mesothelial cell response to S. epidermidis infection,

the biological variability inherent in different infecting strains of bacteria, and the limitations

of the Met-5A cell line for the study of peritoneal biology.

Our study purposefully focussed on an early period post-infection of 1 hour, due to viability

studies demonstrating increased mesothelial cell death after this time with some bacterial spe-

cies. Even by 1 hour, two signalling pathways related to apoptosis were represented in the top

35 canonical pathways, suggesting that severe infection can activate pathways leading to cell

death early after infection.

Analysis of our microarray data revealed 38 genes that were significantly differentially regu-

lated by S. epidermidis using a stringent cut-off and accounting for multiple comparisons. Of

these, 25 genes were up-regulated, 13 genes were down-regulated, and 4 genes were common

to both isolates (Up: ZFP36, NFKBIA and MAP3K5; Down: ITLN1). To provide a further,

more targeted analysis of gene regulation following infection, we next utilized the Qiagen RT2

PCR array to focus on genes known to be associated with antibacterial responses, and to exam-

ine their expression after infection with S. epidermidis. Two profiles of gene expression were

observed in primary mesothelial cells exposed to S. epidermidis reference isolates, with

ATCC1 14990 resulting in predominantly down-regulation of genes, and ATCC1 12228

showing more frequent up-regulation of gene expression (Fig 6). The observed variation in

mesothelial cell responses to individual isolates of S. epidermidis may be explained by the high

genetic variability present in the genomes of S. epidermidis isolates [28]. S. epidermidis gener-

ally lack the more common “classical” virulence factors such as toxins [29], and differences in

gene content between individual strains have been linked to their ability to invade tissue and

cause disease [28]. Three of the differentially regulated genes identified by microarray were

present on the RT2 PCR array (NFKBIA, TNF, CXCL2), with all 3 genes significantly up-regu-

lated by S. epidermidis in primary mesothelial cells. Differences were also observed between in

Table 3. Changes in mesothelial cell gene expression of CCL5, TLR4, TNF, ZFP36, EDN1 and ITLN1 1 hour after infection with S. epidermidis.

Method S. epidermidis Isolate cfu/mL Fold change in gene expression1

Primary mesothelial cells Met-5A mesothelial cells

CCL5 TLR4 TNF ZFP362 EDN12 ITLN12 CCL5 TLR4 TNF

Microarray ATCC 14990 107 1.30 ND3 -1.18 1.66 1.52 -1.93 −4 −4 −4

ATCC 12228 107 1.32 ND3 6.87 2.24 2.72 -1.77 −4 −4 −4

RT2 Array C016 107 −4 −4 −4 −4 −4 −4 6.73 -1.81 -6.16

ATCC 14990 107 1.68 -1.08 -1.23 −4 −4 −4 2.64 -2.67 -5.74

ATCC 12228 107 2.25 -1.57 19.43 −4 −4 −4 6.41 -1.63 -3.00

qPCR C016 108 1.11 -1.04 14.52 1.48 1.47 -1.41 1.54 2.28 -1.59

C016 106 1.13 -1.35 1.07 -1.02 -1.13 -1.25 1.79 2.31 -1.30

C016 104 1.18 -1.18 -1.10 -1.25 -1.18 -1.25 1.70 2.40 -1.01

1 Fold change relative to the media control.
2 −, Gene not present on the RT2 PCR array.
3 ND, Not detected.
4 −, Not tested.

https://doi.org/10.1371/journal.pone.0178151.t003
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responses between primary mesothelial cells and the Met-5A cell line. Given the heterogeneity

in results, we conducted a further series of dose-response experiments in both mesothelial cell

types using qPCR. qPCR validation was conducted on six genes, including CCL5 (RANTES),

which was consistently up-regulated in response to S. epidermidis infection, and TLR4 and

ITLN1, which were down-regulated by primary mesothelial cells in response to multiple S. epi-
dermidis isolates.

As the immortalised mesothelial cell line Met-5A is commonly employed for the study of

mesothelial cell responses, we assessed whether results were comparable between Met-5A and

primary mesothelial cells across a number of genes. Primary mesothelial cells exhibited a con-

sistent pattern of TLR4 expression in response to S. epidermidis infection. The presence of

TLR4 mRNA in primary mesothelial cells is consistent with previous studies [30]. Expression

of TLR4 is a confirmatory marker for Met-5A cells [31], however discordant TLR4 expression

was seen in Met-5A cells. Conflicting data were also seen for TNF expression in Met-5A cells.

qPCR data showed uniform down-regulation of TNF in Met-5A cells whereas primary meso-

thelial cells displayed a strong dose-dependent signal early after infection. Given that Met-5A

cells have aberrant TNF and TLR4 expression, caution should be exercised before these cells

are used for immunological studies.

Several genes identified through our experimental approach have been linked to roles in

host responses to bacterial infection (CCL5, ITLN1), immune modulation (ZFP36, NFKBIA)

and damage (EDN1) during PD or during episodes of PD peritonitis [32–34]. CCL5 is a che-

mokine that is secreted by mesothelial cells and is well-known for its role the recruitment of

mononuclear cells during infection [35]. ITLN1, also known as human intelectin-1 or omen-

tin, was uniformly down-regulated by mesothelial cells in response to S. epidermidis infection.

Intelectin has been proposed as a means of microbial surveillance by host cells [32, 33] and the

ability of S. epidermidis to down-regulate intelectin may be a bacterial mechanism of avoiding

detection by the host immune system. Intelectin has also been identified by proteomic analyses

of PD fluid [34]. ZFP36, encoding tristetraprolin, is a key regulator of cytokine and chemokine

expression during inflammation, particularly of TNF [36]. NFKBIA, encoding IκBα, was iden-

tified by both microarray and RT2 PCR array studies, and forms a negative-feedback loop lim-

iting the magnitude and duration of the inflammatory response [37]. TLR signaling induces a

rapid increase in TNF mRNA, and tristetraprolin plays a critical role in eliminating TNF

mRNA [38] and preventing an excessive immune response. Endothelin-1, encoded by EDN1,

is a vasoconstrictor peptide recently shown to play a role in the induction of fibrosis during

PD [39, 40]. Although fibrosis is generally considered a late event in PD [41], peritonitis has

been shown to be a risk factor [42, 43], and our results suggest pathways involved in fibrosis

are activated early after infection. Up-regulation of endothelin-1 following S. epidermidis infec-

tion may contribute to mesothelial cell dysfunction and the mesothelial-to-mesenchymal tran-

sition [39].

Analysis of the most highly regulated mesothelial cell genes following S. epidermidis infec-

tion identified 35 canonical pathways, including TNF, TLR and IL-17A signalling. TNF is

potent pro-inflammatory cytokine and mediator of the acute inflammatory response [37].

TNF expression is activated early after infection and signals through the TNFR1 and TNFR2

receptors [44]. TLRs recognise pathogen-associated molecular patterns (PAMPs) on invading

microbes, activating downstream pathways and cytokines that are critical to the innate

immune response [45, 46]. High levels of IL-17, a potent pro-inflammatory mediator involved

in host defence and inflammation [47], have been associated with a protective immune

response early in PD peritonitis, correlating with favourable outcomes [48]. IL-17A has been

shown to play a key role in PD-induced peritoneal damage, with significantly elevated levels of

IL-17A protein detected in effluent from patients on PD for more than 3 years [49].
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Furthermore, immunostaining of biopsy specimens has revealed that IL-17A expression,

although rarely seen in healthy peritoneal tissue, positively correlated with length of time on

PD [49]. Ten of the differentially regulated genes identified by microarray are downstream of

TNF, confirming the relevance of this pathway in mesothelial cell responses to S. epidermidis
infection.

There are several limitations to our study that need to be considered. Only a single time-

point was assessed, and as changes in gene expression are likely to be highly dynamic, particu-

larly early after infection, this may account for some of the variability seen between isolates.

Despite the expectation that infection with a single species of bacteria would provide a clear

dominant response in mesothelial cells, marked biological variability was seen with different

isolates of bacteria. Comparative genomic studies have revealed the S. epidermidis genome

consists of 80% core genes, and a 20% variable gene pool, which can be exchanged between

bacterial species [50, 51]. Genomic variation and the presence of specific virulence factors are

likely to contribute to the varying responses of mesothelial cells to different isolates of S. epider-
midis, which may be relevant to clinical outcomes. Future studies examining protein-level

changes induced by expression of differentially regulated genes will be important [52]. Addi-

tionally, a relatively high inoculum dose of S. epidermidis was used to mimic a severe peritoneal

infection, and growth characteristics and virulence factor expression may be influenced by

bacterial density [53, 54].

Compared to previous research in this area, our study has several advantages. Analyses

were conducted using both primary mesothelial cells and the widely-employed Met-5A cell

line, with results highlighting the need to validate gene expression findings in primary cells. In

addition, live clinical isolates of S. epidermidis cultured from patients with PD peritonitis were

used, unlike many studies that have relied on either cell-free extracts [30] or heat-killed micro-

organisms [50, 55], which may fail to capture the potential complexity resultant from micro-

bial physiological activity.

Conclusions

Peritonitis remains a major clinical problem for patients on peritoneal dialysis. We have iden-

tified a large number of genes and pathways regulated by S. epidermidis infection, including

TNF, TLR4, CCL5, EDN1, ITLN1 and ZFP36. We have highlighted the strain-specific hetero-

geneity in responses and limitations of Met-5A mesothelial cells, as well as providing insight

into the processes shaping the host immune response early after infection. Analysis of how

these responses vary over time and between other bacteria causing peritonitis is highly likely to

provide an explanation for differences in clinical outcomes and to identify novel therapeutic

targets for the treatment of PD peritonitis.
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