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Relationship between differentially 
expressed mRNA and mRNA-
protein correlations in a xenograft 
model system
Antonis Koussounadis1,*, Simon P. Langdon2, In Hwa Um3, David J. Harrison3 & 
V. Anne Smith1

Differential mRNA expression studies implicitly assume that changes in mRNA expression have 
biological meaning, most likely mediated by corresponding changes in protein levels. Yet studies into 
mRNA-protein correspondence have shown notoriously poor correlation between mRNA and protein 
expression levels, creating concern for inferences from only mRNA expression data. However, none 
of these studies have examined in particular differentially expressed mRNA. Here, we examined 
this question in an ovarian cancer xenograft model. We measured protein and mRNA expression 
for twenty-nine genes in four drug-treatment conditions and in untreated controls. We identified 
mRNAs differentially expressed between drug-treated xenografts and controls, then analysed mRNA-
protein expression correlation across a five-point time-course within each of the four experimental 
conditions. We evaluated correlations between mRNAs and their protein products for mRNAs 
differentially expressed within an experimental condition compared to those that are not. We found 
that differentially expressed mRNAs correlate significantly better with their protein product than 
non-differentially expressed mRNAs. This result increases confidence for the use of differential mRNA 
expression for biological discovery in this system, as well as providing optimism for the usefulness of 
inferences from mRNA expression in general.

Genome-wide correlation between expression levels of mRNA and protein are notoriously poor, hover-
ing around 40% explanatory power across many studies1,2. The discrepancy is typically attributed to other 
levels of regulation between transcript and protein product3. However, mRNA expression and, in par-
ticular, significant differences in mRNA expression between conditions, is commonly used for biological 
discovery. For example, mRNA assays are one of the more promising techniques for novel diagnostics 
of cancer4. This reliance on mRNA measurements can be traced both to the relative ease of availability 
of mRNA compared to protein data2,3, as well as to the apparently sensible assumption that differential 
expression ought to mean something, i.e., translate into a functional difference between conditions—and 
this functional difference is typically attributed to protein action. Thus, despite the known poor overall 
correlation between mRNAs and their protein products, there is an implicit assumption that differentially 
expressed mRNAs impact their respective experimental conditions via differences in proteins. However, 
to the best of our knowledge, this assumption has never been explicitly tested.

Most studies of mRNA-protein expression correspondence examine the question from a genome-wide 
viewpoint. These genome-wide studies calculate a correlation coefficient (or other correspondence 
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metric) of mRNA expression versus the corresponding protein expression across a large number of genes 
(e.g.,5–20; Fig. 1a). Some studies have noted that certain classes of genes have higher correlations, often 
those for which reasons to expect tight synchrony can be generated: e.g., secreted proteins, which would 
only require transcription when needed (human plasma proteins21, yeast pheromones12); cell cycle genes, 
which are time-dependent (in humans20, in yeast9); and bacterial genes optimised for fast translation 
(optimal codon-containing genes13, genes within short operons18). Only a limited number of studies have 
investigated correspondence for individual genes across samples or experimental conditions6,11,13,15,18,22–29 
(Fig.  1b). Of these individual gene studies, some simply report the range of correlation coefficients to 
make the point that mRNA and protein expression are sometimes discordant22,26,28,29; some cluster or 
perform similar analyses on expression profiles across samples, finding groups of discordant and con-
cordant mRNA-protein pairs11,13,15,18,24,30; and others identify differentially expressed proteins and exam-
ine the corresponding mRNA expression, typically finding 0-50% of the mRNA levels concordant6,23–25,27. 
This last analysis asks whether differentially expressed proteins are the result of mRNA changes, but as 
post-transcriptional regulation is well known2,3,31, it is unsurprising to find that many are not. None of 
these analyses address the question of how consistently differentially expressed mRNAs translate into 
protein differences.

Here, we specifically examine mRNAs that are differentially expressed across experimental conditions 
and their relationships to their protein products. We calculate individual gene correlations across a time 
series in ovarian cancer xenograft models. We identify mRNAs that are differentially expressed between 
drug-treated and control samples. We compare those correlations where a gene’s mRNA was differentially 
expressed within that condition to those where the mRNA was not. We find that individual gene corre-
lations of differentially expressed mRNA were significantly shifted to higher values, providing support 
for the assumption that differential mRNA expression has biological meaning.

mRNA expression

P
ro

te
in

 e
xp

re
ss

io
n

gene 1
gene 2

gene 3
etc.

mRNA 1

P
ro

te
in

 1

mRNA 2

P
ro

te
in

 2

mRNA 3

P
ro

te
in

 3

etc.

sample or condition A
sample or condition B

etc.

Genome-wide Individual gene

a b

Figure 1.  Genome-wide versus individual gene correlation analyses. (a) Most studies of mRNA-protein 
correspondence calculate a single correlation coefficient (or other correspondence metric) representing 
the correlation between mRNA expression and protein expression across all genes. Individual points upon 
which the correlation is calculated are a single value or an average of multiple samples/conditions, which do 
not necessarily have to be the same between mRNA and protein experiments. This correlation represents a 
general measure of how well mRNA and protein expression corresponds across the entire genome.  
(b) Studies of individual gene correspondence calculate a correlation coefficient (or other correspondence 
metric) for every gene, representing the correlation between the expression of a mRNA and its protein 
product across multiple samples or conditions. Individual points upon which the correlation is calculated 
are a single value or averaged samples for a single condition, which must correspond to the same sample or 
condition for both mRNA and protein measurements. This correlation represents how well the expression 
levels of a particular mRNA-protein pair correspond dynamically across the samples or conditions in the 
experiment. Three genes in (a) and (b) and two samples in (b) are highlighted for illustrative purposes only.
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Results
We used mRNA expression data previously collected and published in Koussounadis et al.32 and newly 
collected protein data from the same experiment. Protein expression was measured by quantitative 
immunofluorescence as described in Methods and a representative image is illustrated in Supplementary 
Figure 1. Protein and mRNA expression measurements for twenty-nine genes were taken across a 
five-point time series (protein and mRNA ‘profiles’) in each of four different conditions, two xenograft 
models treated with two drug regimes (time-points ranging from 1 to 14 days after drug treatment, see 
Methods). Comparisons were made between the mRNA expression of each time point in each condi-
tion to that of pooled untreated controls. An mRNA was considered differentially expressed within a 
condition if any of the five time points showed a significant difference from control (at FDR <  0.05, see 
Methods; henceforth referred to as a differentially expressed mRNA profile). We calculated individual 
gene correlation coefficients between mRNA and protein profiles for each condition, using the five points 
in the time series. Compared to non-differentially expressed mRNA profiles, correlations for differen-
tially expressed mRNAs profiles had a distribution significantly shifted towards higher values (Fig.  2; 
Kolmogorov-Smirnov test, p =  0.008) and a higher median (Fig. 2; Wilcoxon test, p =  0.03).

However, it is possible that this shift could be due to the fact that profiles containing differentially 
expressed mRNAs had a larger dynamic range than those without, leading to a higher signal-to-noise 
ratio and thus a tighter correlation. To evaluate this possibility, we implemented two models: (1) a simple 
model of random samples all having identical relationship between mRNA and protein, but with the 
mRNA drawn from either high- or low-variance distributions (equal to the variance of the differen-
tially expressed and non-differentially expressed mRNA profiles, respectively) and calculating the same 
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Figure 2.  Distribution of mRNA-protein correlations for differentially expressed and non-differentially 
expressed mRNA profiles. The empirical cumulative distribution functions (CDF) over correlation 
coefficients between mRNA and protein values in a condition are plotted for differentially expressed mRNA 
profiles (DE) and non-differentially expressed mRNA profiles (Non-DE). Each individual correlation 
coefficient is based on n =  5 time points within a condition. Inset shows bean plots with ticks for each 
correlation value inside of density envelopes; bars represented medians for each group. Differentially 
expressed mRNA profiles are shifted significantly to higher correlations (Kolmogorov-Smirnov test, 
p =  0.008) and have a higher median (Wilcoxon test, p =  0.03).
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statistics as above, and (2) Monte Carlo shuffling of the mRNA-protein pairing for mRNA profiles to 
generate new profile correlation distributions against which to compare (see Methods for details of both).

Both models supported the significance of our results. The Kolmogorov-Smirnov and Wilcoxon sta-
tistics were significantly higher than those calculated from comparison between high- and low-variance 
samples from the simple model (Kolmogorov-Smirnov D, p =  0.008; Wilcoxon W, p =  0.022). The dis-
tribution of correlations for differentially expressed mRNA profiles was shifted to significantly higher 
values and had a higher median than those calculated from shuffled differentially expressed mRNA 
profiles (Kolmogorov-Smirnov test, p =  0.03; Wilcoxon test, p =  0.04). In contrast, the correlations for 
non-differentially expressed mRNA profiles were not significantly different from those calculated from 
the same profiles shuffled (Kolmogorov-Smirnov test, p =  0.29; Wilcoxon test, p =  0.25).

Because of the relatively small size of our dataset, we further investigated the robustness of our results 
by repeating the analysis using different FDR cut-offs for selecting differentially expressed mRNA pro-
files, ranging from 0.01 to 0.50 (see Methods). If the phenomenon is robust and linked to the differential 
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Figure 3.  Relationship between FDR cut-off and difference in distributions of differentially expressed 
versus non-differentially expressed mRNA profiles . (a) The Kolmogorov-Smirnov p-value for comparison 
of distribution differences of differentially expressed versus non-differentially expressed mRNA profiles is 
plotted for each FDR cut-off used to define differentially expressed mRNA. (b) As in (a) for the Wilcoxon 
p-value for comparison of median differences. (c) Number of mRNA profiles selected as differentially 
expressed is plotted for each FDR cut-off. In all, the value for FDR <  0.05 as used in the main analysis is 
highlighted in blue.
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Figure 4.  Genome-wide correlations for mRNA and protein expression. Scatterplots with associated 
correlation coefficients (r) for (a) all measurements taken (n =  579), (b) means by condition (n =  116), and 
(c) means by gene (n =  29).
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expression of mRNA, we would expect to see increasing levels of significance (lower p-values) as the FDR 
cut-off decreases. We found precisely this expected positive relationship between p-value and FDR cut-off 
for both the distribution and median comparisons (Fig. 3a,b; linear regressions: for Kolmogorov-Smirnov 
test, b =  0.41, t(48) =  6.10, p <  0.0001; for Wilcoxon test, b =  0.49, t(48) =  6.12, p <  0.0001). The excep-
tions to this rule were the three lowest FDR cut-off values, which had relatively high (and non-significant) 
p-values for both comparisons. This can be explained by a small sample size of less than ten differentially 
expressed mRNA profiles (Fig. 3c), leading to reduced power in the statistical test.

For comparison with previous studies, we also explored genome-wide correlations on our data. 
From the genome-wide perspective, there was low correlation between all measured mRNA and pro-
tein expression levels (Fig.  4; r =  0.08, n =  579, p =  0.07). Consideration of mean values by condition 
(averaging across time points) or by gene (averaging across all measurements) resulted in higher corre-
lations than using individual values, although only the correlation by condition was significant (Fig. 4; 
by condition r =  0.19, n =  116, p =  0.04, by gene r =  0.27, n =  29, p =  0.14). Genome-wide correlations 
considering only those measurements in differentially expressed mRNA profiles produced results similar 
to the above (Supplementary Fig. 2).

Discussion
For the first time, we explore the relationship between an mRNA being differentially expressed and the 
mRNA-protein correlation for that gene. Compared to genes whose mRNA is not differentially expressed 
within a condition, we find that genes with differentially expressed mRNA have significantly higher 
correlations between mRNA and protein. This result provides support for the implicit assumption that 
differential mRNA expression reflects a difference between conditions at the functional level of proteins.

We found this significant correspondence despite also finding poor correlations from a genome-wide 
perspective, as have other studies. In fact, our correlations (r =  0.08 – 0.27) are on the low end1. It is 
interesting to note how the correlations increased as more averaging was performed. Most such studies 
collapse over several measurements to obtain one value per mRNA and per protein, either a mean5,13,22 
or maximum17. Averaging across samples appears to approach capturing an overall correspondence of 
mRNA and protein levels across the genome, not reflecting specifics of dynamic responses to regulation. 
However, such dynamic changes are the question of interest when looking for differential expression.

Even against this background of seemingly low correspondence, our analysis revealed that the dif-
ferentially expressed mRNA profiles were significantly shifted to higher correlations with their protein 
products than non-differentially expressed mRNA profiles. It was only a shift in distribution, not two 
distinct populations of profile correlations; however, this is to be expected. Within the non-differentially 
expressed mRNAs profiles, it would be expected that some have high correlations with their protein prod-
uct for reasons unrelated to the experimental condition. Within the differentially expressed mRNAs pro-
files, there were some low and even negative correlations. Firstly it is always possible on a genome-scale 
analysis to have false positives; however, false positives could not account for all the low/negative profile 
correlations. It is also known that mRNA and protein profiles can be decoupled in time15,30, thus it is 
possible that correspondences for some of these correlations might have existed if different time scales 
were used. Finally, it may be the case that other levels of regulation overrode the transcriptional level, 
providing biological fine-tuning for the specific conditions encountered by the cells. It is notable that 
the non-differentially expressed profiles showed correlation distributions no different from those pro-
files randomised, whereas the differentially expressed profiles had significantly higher correlations than 
random. Thus, it appears differential expression does co-occur with tighter connection between mRNA 
and protein levels.

We show a subtle phenomenon: genes whose transcription is modified by experimental manipulation 
are more likely to show concordant protein expression across these same experimental conditions, com-
pared to genes whose transcription is not strongly influenced by the experimental manipulation. This 
shift in likelihood supports the view that multiple levels of regulation act together to prepare a cell most 
effectively for the conditions it encounters. Transcription differences can be triggered by changes in the 
environment. These transcription changes can be modified or overridden by translational regulation. 
Rates of protein degradation, as well, will influence how closely a protein level tracks its transcript. Our 
results suggest that when the environment triggers a transcription difference, it is more likely that the 
same environment triggers concordant reactions for translational regulation for a gene—or perhaps less 
regulation at the translational level—compared to genes whose transcription is not being dynamically 
changed by these conditions. It may also be the case that protein degradation could be slowed or has-
tened to more quickly bring protein levels in line with changing transcript levels, compared to transcripts 
not currently in flux. The alternate possibility, that changes in mRNA expression are irrelevant to the 
protein composition of a cell—essentially meaningless—makes little biological sense. However, this con-
cern has plagued the field since the low mRNA-protein correlations first began being reported. Thus, it 
is reassuring that our results show a real, if subtle, influence of differential mRNA expression on protein 
levels in our experimental system.

It may at first seem concerning that the profile correlation coefficients of all genes ranged the full –1 
to 1 spectrum (r =  − 0.95 to 0.94, precisely). However, this wide range is perfectly in line with previous 
studies. Vogel et al.30 reported correlations across time points of a similar range to ours (r =  − 0.8 – 1). 
Chen et al.22 reported a narrower range (r =  − 0.47 – 0.44), but still centred around zero. One exception, 
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Shankavaram et al.28, reported positive-shifted correlations (r =  − 0.1 – 0.8); however, these values were 
generated after several levels of filtering on the mRNA data for high autocorrelation and maximal corre-
lation with protein, which could account for the positive shift compared to other studies. Many studies 
that examined individual mRNA-protein pairs across samples did not calculate correlation coefficients, 
but did report phenomena such as protein and mRNA changing in opposite directions11,13,24,27. Thus, as 
many previous studies have noted, protein and mRNA expression is often discordant.

It is encouraging that against this background, we were still able to discern a significant signal of 
increased concordance between mRNAs with differentially expressed profiles and their protein prod-
uct, compared to mRNAs which were not actively regulated by the environment. Analysed from the 
same perspective as previous studies, our results are no different: overall low correspondence between 
mRNA and protein expression, implying strong contribution of post-transcriptional levels of regulation. 
However, by taking a different perspective—specifically addressing the implicit assumption of mRNA 
expression analysis that differential mRNA expression has some functional impact, most likely via pro-
tein expression—we found that differentially expressed mRNAs are more likely than non-differentially 
expressed mRNAs to translate into concordant behaviour at the protein level, giving confidence for the 
use of mRNA data for biological discovery.

Our study was relatively limited, with only 29 genes examined in 4 conditions for both protein and 
mRNA expression (116 correlations in total). However, our analysis using differing FDR cut-offs, which 
showed increasingly clear differences as cut-off decreases, indicates our result is not a statistical fluke 
of a particular set of correlations, but instead a general phenomenon within this experiment. Because 
there is no reason to suppose that our experimental system would produce greater mRNA-protein corre-
spondence than any other system, we suggest this connection between dynamic regulation of mRNA and 
mRNA-protein correlation should be present in other systems. Thus, we believe that further and more 
extensive studies on this phenomenon are called for. Such studies should include multiple measurements 
of both mRNA and protein expression nested inside an experimental manipulation: this enables calcu-
lation of both individual-gene correlations (from the multiple measurements) and differential mRNA 
expression (from the experimental manipulation). Further exploration of the correlation between mRNA 
and protein under those conditions in which we apply differential mRNA expression analysis could shed 
more light on what information we can extrapolate from differentially expressed mRNAs.

Methods
Xenografts.  Xenograft experiments are previously described in Koussounadis et al.32. Briefly, two 
ovarian cancer tumour models, OV1002 and HOX42433, were implanted subcutaneously in the flanks of 
adult female nu/nu mice and allowed to grow to 4-6 mm in diameter. The mice received one of two drug 
treatments via intraperitoneal injection on day 0, carboplatin (50 mg/kg) only or carboplatin (50 mg/
kg) +  paclitaxel (10 mg/kg), or were left untreated as controls. Xenografts were harvested from treated 
mice on days 1, 2, 4, 7, and 14, and from untreated controls on days 0, 1, 2, 7, and 14. The xenograft 
studies were conducted under a UK Home Office Project Licence in accordance with UK guidelines and 
regulations. Experiments were approved by the University of Edinburgh Animal Welfare and Ethical 
Review Body.

mRNA expression.  Full details of mRNA expression measurement and analysis are provided in 
Koussounadis et al32. Briefly, total mRNA was prepared from 10-50 mg of frozen tissue, and divided into 
two aliquots for two technical replicates per sample. Total RNA (0.5 mg) was amplified and biotinylated, 
diluted to 150 ng/ml, and hybridized to Illumina HT-12 BeadChips (Illumina, San Diego, CA, USA). 
This platform had been previously validated via PCR in a breast cancer xenograft study34. Expression 
values were processed with Bioconductor’s lumi package35. mRNA expression was measured in 3-4 bio-
logical replicates per time point per condition (except one which had 2 replicates; Supplementary Table 
1); controls were only measured on days 0, 1, 7, and 14. Agreement among biological replicates was 
good as measured by Pearson correlation coefficients (mean 95% confidence interval r =  0.987 – 0.990; 
Supplementary Table 1).

Protein expression.  Protein was measured via immunofluorescence as previously described in 
Faratian et al36. Briefly, tissue microarrays were prepared from paraffin blocks of formalin-fixed xeno-
graft material. Target proteins were chosen based on expectation of showing response in ovarian cancer 
treatment (e.g., representatives of MAPK, beta-catenin, ER, cell cycle, DNA-damage response pathways, 
among others). Antibodies for the proteins and conditions used are shown in Supplementary Table 2. 
Pan-cytokeratin antibody was used to identify tumour cells and normal epithelial cells, DAPI counterstain 
to identify nuclei, and Cy-5-tyramide detection for target for compartmentalised (tissue and subcellular) 
analysis of tissue sections. Monochromatic images of each TMA core were captured at 20X objective 
using an Olympus AX-51 epifluorescence microscope, and high-resolution digital images analysed by the 
AQUAnalysis software to generate AQUA (Automated quantitative analysis) expression scores for each 
sample (representative images shown in Supplementary Figure 1). Protein expression was measured in 
3-8 biological replicates per time point per condition (except two, which had 1 and 2 replicates each; 
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Supplementary Table 1). Agreement among biological replicates was good as measured by Pearson cor-
relation coefficients (mean 95% confidence interval r =  0.938 – 0.958; Supplementary Table 1).

Differential expression.  Raw mRNA expression data were background corrected, variance stabilised 
transformed (VST) and robust spline normalised (RSN) using Bioconductor’s lumi package. AQUA pro-
tein expression scores were log-transformed with base 2. For both mRNA and protein expression, log 
fold-change values for each time point in each drug treatment condition were calculated by comparing 
mean expression levels across biological replicates to pooled controls for that tumour model using the 
Bioconductor package limma37. Both mRNA and protein expression exhibited similar dynamic ranges 
in log fold-change, from approximately –1 to 1. The output of limma was used to identify differentially 
expressed mRNAs, defined as those having FDR-adjusted p-values below 0.05. When evaluating varying 
FDR-cut offs, differentially expressed mRNAs were defined using FDR-adjusted p-values from 0.01 to 
0.50 in steps of 0.01.

The mRNA dataset has been deposited to Gene Expression Omnibus (GEO) with accession number 
GSE49577. The protein dataset (raw AQUA scores and limma-produced log-fold change values) is pro-
vided in Supplementary Data 1.

Correlations.  Pearson correlation coefficients were calculated between mRNA and protein profiles for 
each drug treatment condition by correlating the log fold-change values for mRNA and protein expres-
sion across the five time points in each condition. For genes with multiple mRNA probes corresponding 
to a single protein, the probe with the highest average expression level across time points was used35. 
Genome-wide correlations were calculated on three different scales, by calculating Pearson correlation 
coefficients between mRNA and protein for: (1) all measurements taken, (2) mean across all time points 
in a condition, and (3) mean across all time points and conditions for each gene.

Simple model of variance differences.  To evaluate whether the higher correlation coefficients from 
differentially expressed mRNA profiles could be due to drawing from samples with higher variance, we 
implemented a simple model containing a single mRNA-protein correspondence, but drawing samples 
from high- and low-variance populations. Correspondence between mRNA and protein was modelled as

= + + ( )y mx b e 1

Where y is protein expression, x is mRNA expression, m is the slope, b is the intercept, and e is 
normally distributed noise. The values for m and b represent a single mRNA-protein correspondence 
identical for all pairs, and was calculated based on the corresponding values from a linear regression of 
log fold-change of mRNA against log fold-change of protein using all data. The noise e was generated 
by drawing from a normal distribution with mean equal to zero and standard deviation equal to the 
standard deviation of the residuals from the linear regression. The mRNA expression x was generated 
by drawing from a normal distribution with mean and standard deviation equal that of the mRNA log 
fold-change values for either: for high-variance, differentially expressed mRNA profiles; for low variance, 
non-differentially expressed mRNA profiles. Values for all variables used in the simple model are pre-
sented in Supplementary Table 3.

A single comparison was performed using this simple model as follows. For the high-variance cor-
relations, one mRNA profile was created by randomly generating five samples from the high-variance 
distribution. The corresponding protein profile was calculated by determining protein expression for 
each of the group of five using equation (1). A correlation coefficient was then calculated between the 
mRNA and protein profiles. This process was repeated as many times as correlations existed for differ-
entially expressed mRNA profiles. Similarly for the low-variance correlations, one mRNA profile was 
created by randomly generating five samples from the low-variance distribution. The corresponding 
protein profile was calculated by determining protein expression for each of the group of five using 
equation (1). A correlation coefficient was then calculated between the mRNA and protein profiles. 
This process was repeated as many times as correlations existed for non-differentially expressed mRNA 
profiles. Kolmogorov-Smirnov and Wilcoxon tests were then performed between the high-variance and 
low-variance correlation distributions.

The actual Kolmogorov-Smirnov and Wilcoxon statistics were compared to those generated from 
100,000 repetitions of a single comparison from the simple model. For each test, the number of statistics 
greater than or equal to that of the actual statistic was counted to generate a p-value.

Monte Carlo shuffling of profiles.  Further tests for the significance of the higher correlation coeffi-
cients from differentially expressed mRNA profiles were calculated by shuffling the mRNA-protein pair-
ing of profiles and calculating new correlations based on the shuffled profiles. A shuffling event shuffled 
the mRNA label for an entire profile, maintaining the order of time points within the profile: e.g., if 
mRNA X was swapped with mRNA Y, the first time point for mRNA X would be swapped with the first 
time point for mRNA Y, the second time point for mRNA X with the second time point for mRNA Y, 
and so on. This led to two different analyses.
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In the first, mRNA-protein pairing of differentially expressed mRNA profiles were shuffled and new 
correlations calculated. Shuffling and correlation generation was repeated 1,000 times to provide a large 
distribution of shuffled profile correlations. The actual distribution of correlations for differentially 
expressed mRNA profiles was compared to this shuffled distribution using Kolmogorov-Smirnov and 
Wilcoxon tests.

The second was similar to the first, except that mRNA-protein pairing for non-differentially expressed 
mRNA profiles were shuffled. New correlations were calculated from these shuffled profiles. Shuffling 
and correlation generation were repeated 1,000 times to provide a large distribution of shuffled profile 
correlations. The actual distribution of correlations for non-differentially expressed mRNA profiles was 
compared to this shuffled distribution using a Kolmogorov-Smirnov and Wilcoxon tests.
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