14 research outputs found

    Glossary on atmospheric electricity and its effects on biology

    Get PDF
    There is an increasing interest to study the interactions between atmospheric electrical parameters and living organisms at multiple scales. So far, relatively few studies have been published that focus on possible biological effects of atmospheric electric and magnetic fields. To foster future work in this area of multidisciplinary research, here we present a glossary of relevant terms. Its main purpose is to facilitate the process of learning and communication among the different scientific disciplines working on this topic. While some definitions come from existing sources, other concepts have been re-defined to better reflect the existing and emerging scientific needs of this multidisciplinary and transdisciplinary area of research

    Spatiotemporal Variability and Contribution of Different Aerosol Types to the Aerosol Optical Depth over the Eastern Mediterranean

    Get PDF
    This study characterizes the spatiotemporal variability and relative contribution of different types of aerosols to the aerosol optical depth (AOD) over the Eastern Mediterranean as derived from MODIS (Moderate Resolution Imaging Spectroradiometer) Terra (March 2000-December 2012) and Aqua (July 2002-December 2012) satellite instruments. For this purpose, a 0.1deg 0.1deg gridded MODIS dataset was compiled and validated against sun photometric observations from the AErosol RObotic NETwork (AERONET). The high spatial resolution and long temporal coverage of the dataset allows for the determination of local hot spots like megacities, medium-sized cities, industrial zones and power plant complexes, seasonal variabilities and decadal averages. The average AOD at 550 nm (AOD550) for the entire region is approx. 0.22 +/- 0.19, with maximum values in summer and seasonal variabilities that can be attributed to precipitation, photochemical production of secondary organic aerosols, transport of pollution and smoke from biomass burning in central and eastern Europe and transport of dust from the Sahara and the Middle East. The MODIS data were analyzed together with data from other satellite sensors, reanalysis projects and a chemistry-aerosol-transport model using an optimized algorithm tailored for the region and capable of estimating the contribution of different aerosol types to the total AOD550. The spatial and temporal variability of anthropogenic, dust and fine-mode natural aerosols over land and anthropogenic, dust and marine aerosols over the sea is examined. The relative contribution of the different aerosol types to the total AOD550 exhibits a low/high seasonal variability over land/sea areas, respectively. Overall, anthropogenic aerosols, dust and fine-mode natural aerosols account for approx. 51, approx. 34 and approx. 15 % of the total AOD550 over land, while, anthropogenic aerosols, dust and marine aerosols account approx. 40, approx. 34 and approx. 26 % of the total AOD550 over the sea, based on MODIS Terra and Aqua observations

    Nine-year spatial and temporal evolution of desert dust aerosols over South and East Asia as revealed by CALIOP

    Get PDF
    We present a 3-D climatology of the desert dust distribution over South and East Asia derived using CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation) data. To distinguish desert dust from total aerosol load we apply a methodology developed in the framework of EARLINET (European Aerosol Research Lidar Network). The method involves the use of the particle linear depolarization ratio and updated lidar ratio values suitable for Asian dust, applied to multiyear CALIPSO observations (January 2007-December 2015). The resulting dust product provides information on the horizontal and vertical distribution of dust aerosols over South and East Asia along with the seasonal transition of dust transport pathways. Persistent high D_AOD (dust aerosol optical depth) values at 532 nm, of the order of 0.6, are present over the arid and semi-arid desert regions. Dust aerosol transport (range, height and intensity) is subject to high seasonality, with the highest values observed during spring for northern China (Taklimakan and Gobi deserts) and during summer over the Indian subcontinent (Thar Desert). Additionally, we decompose the CALIPSO AOD (aerosol optical depth) into dust and non-dust aerosol components to reveal the non-dust AOD over the highly industrialized and densely populated regions of South and East Asia, where the non-dust aerosols yield AOD values of the order of 0.5. Furthermore, the CALIPSO-based short-term AOD and D_AOD time series and trends between January 2007 and December 2015 are calculated over South and East Asia and over selected subregions. Positive trends are observed over northwest and east China and the Indian subcontinent, whereas over southeast China trends are mostly negative. The calculated AOD trends agree well with the trends derived from Aqua MODIS (Moderate Resolution Imaging Spectroradiometer), although significant differences are observed over specific regions.Peer reviewe

    Glossary on atmospheric electricity and its effects on biology

    Full text link
    [EN] There is an increasing interest to study the interactions between atmospheric electrical parameters and living organisms at multiple scales. So far, relatively few studies have been published that focus on possible biological effects of atmospheric electric and magnetic fields. To foster future work in this area of multidisciplinary research, here we present a glossary of relevant terms. Its main purpose is to facilitate the process of learning and communication among the different scientific disciplines working on this topic. While some definitions come from existing sources, other concepts have been re-defined to better reflect the existing and emerging scientific needs of this multidisciplinary and transdisciplinary area of research.This paper is based upon work from the COST Action "Atmospheric Electricity Network: coupling with the Earth System, climate and biological systems (ELECTRONET)," supported by COST (European Cooperation in Science and Technology). AO received funding from Poland Ministry of Science and Higher Education for statutory research of the Institute of Geophysics, Polish Academy of Sciences (Grant No 3841/E-41/S/2019).Fdez-Arroyabe, P.; Kourtidis, K.; Haldoupis, C.; Savoska, S.; Matthews, J.; Mir, LM.; Kassomenos, P.... (2021). Glossary on atmospheric electricity and its effects on biology. International Journal of Biometeorology. 65(1):5-29. https://doi.org/10.1007/s00484-020-02013-9S529651Adrovic F (2012) Editor, Gamma radiation, IntechOpen.Alberts B (2014). Molecular biology of the cell (6th ed.). New York. ISBN 9780815344322Ambus Per, (2015) Sophie Zechmeister-Boltenstern Sophie, in Biology of the Nitrogen Cycle, 2007.G.P. Robertson1, P.M. Groffman2, in Soil Microbiology, Ecology and Biochemistry (4th Edition)Apollonio F, Liberti M, Paffi A, Merla C, Marracino P, Denzi A, Marino C, d’Inzeo G (2013) Feasibility for microwaves energy to affect biological systems via nonthermal mechanisms: a systematic approach. IEEE Trans Microwave Theory Techn 61(5):2031–2045. https://doi.org/10.1109/TMTT.2013.2250298Arnold F (1986) Atmospheric ions. Stud Environ Sci 26(103-133):135–142Barrington-Leigh CP, Inan US, Stanley M (2001) Identification of sprites and elves with intensified video and broadband array photometry. J Geophys Res 106(2):1741Bazilevskaya G (2000) Observations of variability in cosmic rays. Space Sci Rev 94:25–38. https://doi.org/10.1023/A:1026721912992Benson D, Markovich A, Lee SH (2010) Ternary homogeneous nucleation of H2SO, NH3, H2O under conditions relevant to the lower troposphere. Atmos Chem Phys 10(9):22395–22414Bonnafous P et al (1999) The generation of reactive-oxygen species associated with long-lasting pulse-induced electropermeabilization of mammalian cells is based on a non-destructive alteration of the plasma membrane. Biochim et BiophysActa (BBA) - Biomembr 1461:123–134. https://doi.org/10.1016/S0005-2736(99)00154-6Bór (2013) Optically perceptible characteristics of sprites observed in Central Europe in 2007-2009. J Atmos Sol Terr Phys 92:151–177. https://doi.org/10.1016/j.jastp.2012.10.008Bowker GE, Crenshaw HC (2007) Electrostatic forces in wind-pollination, Part 1: Measurement of the electrostatic charge on pollen. Atmos Environ 41(8):1587–1595Buonsanto MJ (1999) Ionospheric storms–a review. Space Sci Rev 88:563–601Chafai DE et al (2019) Reversible and irreversible modulation of tubulin self-assembly by intense nanosecond pulsed electric fields. Adv Mater 31:e1903636Chalmers JA (1949) Atmospheric electricity, 1st edn. Pergamon Press, OxfordChilingarian A, Soghomonyan S, Khanikyanc Y, Pokhsraryan D (2019) On the origin of particle fluxes from thunderclouds. Astropart Phys 105:54–62Cifra M, Pospíšil P (2014) Ultra-weak photon emission from biological samples: definition, mechanisms, properties, detection and applications. J Photochem Photobiol B Biol 139:2–10. https://doi.org/10.1016/j.jphotobiol.2014.02.009Cifra M, Fields JZ, Farhadi A (2011) Electromagnetic cellular interactions. Prog Biophys Mol Biol 105(3):223–246. https://doi.org/10.1016/j.pbiomolbio.2010.07.003Cifra M, Apollonio F, Liberti M et al (2020) Possible molecular and cellular mechanisms at the basis of atmospheric electromagnetic field bioeffects. Int J Biometeorol. https://doi.org/10.1007/s00484-020-01885-1Clarke D, Whitney H, Sutton G, Robert D (2013) Detection and learning of floral electric fields by bumblebees. Science 340:66–69Clarke D, Morley E, Robert D (2017) The bee, the flower, and the electric field: electric ecology and aerial electroreception. J Comp Physiol A 203(9):737–748Corbet SA, Beament J, Eisikowitch D (1982) Are electrostatic forces involved in pollen transfer? Plant Cell Environ 5(2):125–129Daintith and Gould (2006) The facts on file dictionary of astronomy/edited by John Daintith, William Gould New York, NY: Facts on File, c1994. Call # 520.3 FA. “Cosmic rays are a global source of ionization distributed through the Galaxy.” Source: Dalgarno, A. (2006), InterstelDal Maso M, Kulmala M, Lehtinen KEJ, Mäkelä JM, Aalto P, O’Dowd CD (2002) Condensation and coagulation sinks and formation of nucleation mode particles in coastal and boreal forest boundary layers. J Geophys Res 107. https://doi.org/10.1029/2001jd00Dal Maso M, Kulmala M, Riipinen I, Wagner R, Hussein T, Aalto PP, Lehtinen KEJ (2005) Formation and growth of fresh atmospheric aerosols: eight years of aerosol size distribution data from SMEAR II, Hyytiälä, Finland. Boreal Environ Res 1:2005Diaz AF, Felix-Navarro RM (2004) A semi-quantitative tribo-electric series for polymeric materials: the influence of chemical structure and properties. J Electrost 62(4):277–290. https://doi.org/10.1016/j.elstat.2004.05.005Djafer D, Irbah A (2013) Estimation of atmospheric turbidity over Ghardaïa city. Atmos Res, Elsevier 128:76–84. https://doi.org/10.1016/j.atmosres.2013.03.009ff.ffhal-00801475fDusenbery DB (1992) Sensory ecology. W.H. Freeman, New York ISBN 0-7167-2333-6EC-GPHSW (2013) European Commission. Guidance on the protection of the health and safety of workers from the potential risks related to nanomaterials at work-guidance for employers and health and safety practitioners. BrusselsEncyclopedia Britannica, (2019) https://www.britannica.com/ Accessed 1.10.2019European Committee for Standardization (1993) CEN-EN 481-workplace atmospheres-size fraction definitions for measurement of airborne particles.Fernandez de Arroyabe P, Lecha Estela L, Schimt F (2017) Digital divide, biometeorological data infrastructures and human vulnerability definition. Int J Biometeorol 2018:733–740. https://doi.org/10.1007/s00484-017-1398-xFeynman R (1970) The Feynman lectures on physics Vol II Addison-Wesley Publishing Longman.Finlay CC et al (2010) International Geomagnetic Reference Field: the eleventh generation. Geophys J Int 183(3):1216–1230Fishman GJ, Bhat PN, Mallozzi R, Horack JM, Koshut T, Kouveliotou C, Pendleton GN, Meegan CA, Wilson RB, Paciesas WS, Goodman SJ, Christian HJ (1994) Discovery of intense gamma-ray flashes of atmospheric origin. Science 264(5163):1313–1316. https://doi.org/10.1126/science.264.5163.1313Forbush SE (1937) On the effects in cosmic-ray intensity observed during the recent magnetic storm. Phys Rev 51(12):1108–1109. https://doi.org/10.1103/PhysRev.51.1108.3Franz RC, Nemzek RJ, Winckler JR (1990) Television image of a large upward electrical discharge above a thunderstorm system. Science 249:48–51Freeman S, Quilin K, Allison L (1965) Biological science 5th edition. (2013) Pearson Publishing.p.1059.Fullekrug, M., and M. J. Rycroft (2006) The contribution of sprites to the global atmospheric electric circuit. Earth Planets Space 58(9):1193–1196Fundamentals of Electronics (1965) Volume 1b — Basic Electricity - Alternating Current. Bureau of Naval Personnel. 1965. p. 197GFCS. WMO-WHO Global Framework for Climate Services (GFCS) (2020) http://www.wmo.int/gfcs/about-gfcs, Accessed 1.10.2019Gonzalez WD, Joselyn JA, Kamide Y, Kroehl HW, Rostoker G, Tsurutani BT, Vasyliunas VM (1994) What is a geomagnetic storm? J Geophys Res Space 99(A4):5771–5792. https://doi.org/10.1029/93JA02867GSFT - Glossary for the Solar Flare Theory (n.d.) web site by Gordon Holman and Sarah Benedict. Responsible NASA Official: Gordon D. Holman, Heliophysics Science Division, NASA/Goddard Space Flight Center, Solar Physics Laboratory / Code 671, [email protected] C (1998) Turbidity determination from broadband irradiance measurements: a detailed multi-coefficient approach. J Appl Meteorol 37:414–435Gunn R (1954) Diffusion charging of atmospheric droplets by ions, and the resulting combination coefficients. J Atmos Sci 11(5):339–347Haldoupis C (2012) Midlatitude sporadic E. A typical paradigm of atmosphere-ionosphere coupling. Space Sci Rev 168:441–461Handbook of Biological Effects of Electromagnetic Fields (third), (2007) Edited by Frank S. Barnes and Ben Greenebaum, 2007, CRC Press Taylor & Francis Group Boca Raton 33487-32742Hargreaves JK (1992) The solar-terrestrial environment. Cambridge Atmospheric and Space Science Series. Cambridge University PressHarrison RG (2000) Cloud formation and the possible significance of charge for atmospheric condensation and ice nuclei. Space Sci Rev 94(1):381–396Harrison RG (2013) The Carnegie curve. Surv Geophys 34:209–232. https://doi.org/10.1007/s10712-012-9210-2Harrison RG, Nicoll KA (2018) Fair weather criteria for atmospheric electricity measurements. J Atmos Sol Terr Phys 179:239–250Harrison RG, Tammet H (2008) Ions in the terrestrial atmosphere and other solar system atmospheres. Space Sci Rev 137:107–118. https://doi.org/10.1007/s11214-008-9356-xHayakawa M, Hattori K, Ando Y (2004) Natural electromagnetic phenomena and electromagnetic theory: a review. IEEJ Trans Fundam Mater 124(2004):72–79Hekstra DR et al (2016) Electric-field-stimulated protein mechanics. Nature 540.7633(2016):400Hinds W C (1982, 1999) Aerosol technology: properties, behavior and measurement of airborne particles, 2nd edn. Wiley, New York.Hirsikko A, Nieminen T, Gagné S, Lehtipalo K, Manninen HE, Ehn M, Hõrrak U, Kerminen VM, Laakso L, McMurry PH, Mirme A, Mirme S, Petäjä T, Tammet H, Vakkari V, Vana M, Kulmala M (2011) Atmospheric ions and nucleation: a review of observations. Atmos Chem Phys 11:767–798. https://doi.org/10.5194/acp-11-767-2011Hodgkin AL, Huxley AF (1952) Aquantitative description of membrane current and its application to conduction and excitation in nerves. J Physiol 117(4):500–544 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1392413/Hoppel WA (1969) Application of three-body recombination and attachment coefficients to tropospheric ions. Pure Appl Geophys 75:158–166Hörrak U, Salm J, Tammet H (2000) Statistical characterization of air ion mobility spectra at Tahkuse Observatory: classification of air ions. J Geophys Res 105(D7):9291–9302Hundhausen AJ (1995) The solar wind. In: Kivelson MG, Russell CT (eds) Introduction to space physics. Cambridge University Press, pp 91–198Hunting, E.R., Matthews, J., de Arróyabe Hernáez, P.F., England, S.J., Kourtidis, K., Koh, K., Nicoll, K., Harrison, R.G., Manser, K., Price, C. and Dragovic, S., (2020). Challenges in coupling atmospheric electricity with biological systems. u, pp.1-14. https://doi.org/10.1007/s00484-020-01960-7ICRP (1994) International Commission on Radiological Protection Human respiratory tract model for radiological protection, Annual 66.Imyanitov IM (1957) Instruments and methods for the study of atmospheric electricity (in Russian), Gostekhizdat.Imyanitov IM, Chubarina EV (1967) Electricity of free atmosphere, (Gidrometeoizdat, 1965) NASA/NSF Israel Program for Scientific Translations.Israël H (1971) Atmospheric electricity, Vol. I, Fundamentals, conductivity, ions, Israel Program for Scientific Translations, JerusalemIsraël H (1973) Atmospheric electricity, Vol. II, Fields, charges, currents, Israel Program for Scientific Translations, Jerusalem.James MR, Wilson L, Lane SJ, Gilbert JS, Mather TA, Harrison RG, Martin RS (2008) Electrical charging of volcanic plumes, Space Sci. Rev. 137:399–418. https://doi.org/10.1007/s11214-008-9362-zJärvinen A, Aitomaa M, Rostedt A, Keskinen J, Yli-Ojanperä J (2014) Calibration of the new electrical low pressure impactor (ELPI+). J Aerosol Sci 69:150–159. https://doi.org/10.1016/j.jaerosci.2013.12.006Kathren, RL (1998) NORM sources and their origins. Applied Radiation and Isotopes, 49(3):149–168.Kirkby J, Duplissy J, Sengupta K, Frege C, Gordon H, Williamson C, Heinritzi M, Simon M, Yan C, Almeida J, Tröstl J, Nieminen T, Ortega IK, Wagner R, Adamov A, Amorim A, Bernhammer AK, Bianchi F, Breitenlechner M, Brilke S, Chen X, Craven J, Dias A, Ehrhart S, Flagan RC, Franchin A, Fuchs C, Guida R, Hakala J, Hoyle CR, Jokinen T, Junninen H, Kangasluoma J, Kim J, Krapf M, Kürten A, Laaksonen A, Lehtipalo K, Makhmutov V, Mathot S, Molteni U, Onnela A, Peräkylä O, Piel F, Petäjä T, Praplan AP, Pringle K, Rap A, Richards NAD, Riipinen I, Rissanen MP, Rondo L, Sarnela N, Schobesberger S, Scott CE, Seinfeld JH, Sipilä M, Steiner G, Stozhkov Y, Stratmann F, Tomé A, Virtanen A, Vogel AL, Wagner AC, Wagner PE, Weingartner E, Wimmer D, Winkler PM, Ye P, Zhang X, Hansel A, Dommen J, Donahue NM, Worsnop DR, Baltensperger U, Kulmala M, Carslaw KS, Curtius J (2016) Ion-induced nucleation of pure biogenic particles. Nature 533:521–526. https://doi.org/10.1038/nature17953Kivelson MG, Russel ZT (1995) Introduction to space physics. Cambridge University Press, CambridgeKulkarni P, Baron PA, Willeke K (2011) Aerosol measurement: principles, techniques, and applications, 3rd edn. Wiley, New YorkKulmala M, Petäjä T, Nieminen T, Sipilä M, Manninen HE, Lehtipalo K, Dal Maso M, Aalto PP, Junninen H, Paasonen P, Riipinen I, Lehtinen KE, Laaksonen A, Kerminen VM (2012) Measurement of the nucleation of atmospheric aerosol particles. Nat Protoc 7(9):1651–1667. https://doi.org/10.1038/nprot.2012.091https://www.nature.com/articles/nprot.2012.091Kulmala M, Petaja T, Ehn M, Thornton J, Sipila M, Worsnop DR, Kerminen VM (2014) Chemistry of atmospheric nucleation: on the recent advances on precursor characterization and atmospheric cluster composition in connection with atmospheric new particle formation. Annu Rev Phys Chem 65:21–37L’Annunziata MF (2016) Radioactivity, ElsevierLaakso L, Anttila T, Lehtinen KEJ, Aalto PP, Kulmala M, Hõrrak U, Paatero J, Hanke M, Arnold F (2004) Kinetic nucleation and ions in boreal forest particle formation events. Atmos Chem Phys 4:2353–2366. https://doi.org/10.5194/acp-4-2353-2004Lee J-H, Jang A, Bhadri PR, Myers RR, Timmons W, Beyette FR, Papautsky I (2006) Fabrication of microelectrode arrays for in situ sensing of oxidation reduction potentials. Sensors Actuators B 115:220–226.Liberti M, Apollonio F, Merla C, D’Inzeo G (2009) Microdosimetry in the microwave range: a quantitative assessment at single cell level. IEEE Antennas Wireless Propagation Lett 8(5170009):865–868Lidén G (2011) The European Commission tries to define nanomaterials. Ann OccupHyg 55:1–5. https://doi.org/10.1093/annhyg/meq092Liu KN (2002) An introduction to atmospheric radiation. Academic Press, CambridgeLove JJ, Bedrosian PA (2019) Extreme-event geoelectric hazard maps. In: Buzulukova N (ed) Extreme events in geospace-origins, predictability, and consequences. Elsevier, Amsterdam, pp 209–230Lui ATY (1992) Magnetospheric substorms. Physics Fluids B: Plasma Physics 4:2257–2263. https://doi.org/10.1063/1.860194Maccarrone M, Fantini C, Finazzi Agrò A, Rosato N (1998) Kinetics of ultraweak light emission from human erythroleukemia K562 cells upon electroporation. Biochim et BiophysActa (BBA) - Biomembr 1414:43–50. https://doi.org/10.1016/S0005-2736(98)00150-3MacGorman D, Rust WD (1998) The electrical nature of storms. Oxford University Press, New YorkMach DM, Blakeslee RJ, Bateman MG (2011) Global electric circuit implications of combined aircraft storm electric current measurements and satellite-based diurnal lightning statistics. J Geophys Res 116:D05201. https://doi.org/10.1029/2010JD014462Magono C (1980) Thunderstorms. Elsevier, AmsterdamMarkson R (2007) The global circuit intensity: its measurement and variation over the last 50 years. Bull Am Meteorol Soc 88(2):223–242. https://doi.org/10.1175/BAMS-88-2-223Marracino P et al (2019) Tubulin response to intense nanosecond-scale electric field in molecular dynamics simulation. Sci Rep 9.1(2019):10477Mathews JD (1998) Sporadic E: current views and recent progress. J Atmos Sol-Terr Phys 60:413McIver SB (1985) Mechanoreception. In: Kerkut GA, Gilbert LI (eds) Comprehensive Insect Physiol, Biochem and Pharma, 6th edn. Pergamon Press, OxfordMcPherron RL (1995) Magnetospheric dynamics. In: Kivelson MG, Russell CT (eds) Introduction to space physics. Cambridge University Press, Cambridge, pp 400–457Mirabel PJ, Jaecker-Voirol A (1988) Binary homogeneous nucleation. In: Wagner PE, Vali G (eds) Atmospheric aerosols and nucleation. Lecture Notes in Physics, 309th edn. Springer, BerlinMirme A, Tamm E, Mordas G, Vana M, Uin J, Mirme S, Bernotas T, Laakso L, Hirsikko A, Kulmala M (2007) A wide-range multi-channel air ion spectrometer. Boreal Environ Res 12:247–264Miroshnichenko L (2015) Solar cosmic rays: fundamentals and applications. Springer, BerlinMitsutake G, Otsuka K, Hayakawa M, Sekiguchi M, Corndlissen G, Halberg F (2005) Does Schumann resonance affect our blood pressure? Biomed Pharmacother 59:S10–S14Munn RE (1987) Bioclimatology. In: Climatology. Encyclopedia of Earth Science. Springer, Boston. https://doi.org/10.1007/0-387-30749-4_26NASA (2020) https://www.nasa.gov/mission_pages/rbsp/science/rbsp-spaceweather.html Accessed in February 2020Neubert T, Rycroft M, Farges T, Blanc E, Chanrion O, Arnone E, Odzimek A, Arnold N, Enell C-F, Turunen E, Bosinger T, Mika A, Haldoupis C, Steiner RJ, Van der Velde O, Soula S, Berg P, Boberg F, Thejll P, Christiansen B, Ignaccolo M, Fullekrug M, Verronen PT, Montanya J, Crosby N (2008) Recent results from studies of electric discharges in the mesosphere. Surv Geophys 29:71–137. https://doi.org/10.1007/s10712-008-9043-1Nickolaenko AP, Hayakawa M, Hobara Y, (2010) Q-Bursts: natural ELF radio transients, Surv Geophys, Volume 31 4:409-425. https://doi.org/10.1007/s10712010-9096-9Nickolaenko AP, Hayakawa M (2002) Resonances in the Earth–ionosphere cavity. Kluwer Academic Publishers, DordrechtOdzimek A, Baranski P, Kubicki M, Jasinkiewicz D (2018) Electrical signatures of nimbostratus and stratus clouds in ground-level vertical atmospheric electric field and current density at mid-latitude station Swider, Poland. Atmos Res 109C:188–203. https://doi.org/10.1016/j.atmosres.2018.03.018Ogawa T, Tanaka Y, Yasuhara M, Fraser-Smith AC, Gendrin R (1967) Worldwide simultaneity of occurrence of a Q-type burst in the Schumann resonance frequency range. J Geomagn Geoelectr 19:377–384Ouzounov D, Pulinets S, Hattori K, Taylor P (2018) Pre-earthquake processes: a multidisciplinary approach to earthquake prediction studies. American Geophysical Union, WashingtonPalmer SJ, Rycroft MJ, Cermak M (2006) Solar and geomagnetic activity, extremely low frequency magnetic and electric fields and human health at the Earth’s surface. Surv Geophys 27:557–595Parkinson WL, Torreson OW (1931) The diurnal variation of the electric potential of the atmosphere over the oceans. Union Géodésique et Géophysique Internationale Bulletin 8:340–345Pasko VP, Yair Y, Kuo C-L (2012) Lightning related transient luminous events at high altitude in the Earth’s atmosphere: phenomenology, mechanisms, and effects, Space Sci. Rev. 168:475–516. https://doi.org/10.1007/s11214-011-9813-9Pöschl U (2005) Atmospheric aerosols: composition, transformation, climate and health effects. Angewandte Chemie International Edition 44, no. 46 (2005): 7520–40.Price C (2016) ELF Electromagnetic waves from lightning: the Schumann resonances. Atmosphere 7(9):116. https://doi.org/10.3390/atmos7090116Price C, Williams E, Elhalel G, & Sentman D (2020). Natural ELF fields in the atmosphere and in living organisms. In J Biometeorol 1-8.Priest ER (1995) Sun and its magnetohydrodynamics. In: Kivelson MG, Russell CT (eds) Introduction to space physics. Cambridge University Press, Cambridge, pp 58–90Probstein RF, Hicks R (1993) Removal of contaminants from soils by electric fields. Science 260(5107):498–503Purcell and Morin (2013) Harvard University. Electricity and Magnetism, 820 pages (3rd). Cambridge University Press, New York. ISBN 978-1-107-01402-2.Rakov VA, Uman MA (2002) Lightning: physics and effects. Press, Cambridge UniversityReiter R (1985) Fields, currents and aerosols in the lower atmosphere, Steinkopff Verlag, NSF Translation TT 76-52030Repacholi, Michael HB, Greenebaum B (1999) Interaction of static and extremely low frequency electric and magnetic fields with living systems: health effects and research needs. Bioelectromagnetics 20(3):133–160Revil A, Naudet V, Nouzaret J, Pessel M (2003) Principles of electrography applied to self-potential electrokinetic sources and hydrogeological applications. Water Resour Res 39(5)Rich PR (2003) The molecular machinery of Keilin’s respiratory chain. Biochem Soc Trans 31(Pt 6):1095–1105. https://doi.org/10.1042/BST0311095Rishbeth H, Garriot OK (1969), Introduction to ionospheric physics, Academic Press.Rodger CJ (1999) Red sprites, upward lightning, and VLF perturbations. Rev Geophys 37(3):317–336. https://doi.org/10.1029/1999RG900006Rogers RR (1979) A short course in cloud physics. Press, PergamonRoss E, Chaplin WJ (2019) The behaviour of galactic cosmic-ray intensity during solar activity cycle 24. Sol Phys 294:8Ruggeri F, Zosel F, Mutter N, Różycka M, Wojtas M, Ożyhar A, Schuler B, Krishnan M (2017) Single-molecule electrometry. Nat Nanotechnol 12(5):488–495Runge J, Balasis G, Daglis IA, Papad

    Similar patterns of tropical precipitation and circulation changes under solar and greenhouse gas forcing

    Get PDF
    Funder: "Cosmic and electric effects on aerosols and clouds”; Grant(s): (MIS: 5049552)Funder: Villum Fonden; doi: http://dx.doi.org/10.13039/100008398Abstract: Theory and model evidence indicate a higher global hydrological sensitivity for the same amount of surface warming to solar as to greenhouse gas (GHG) forcing, but regional patterns are highly uncertain due to their dependence on circulation and dynamics. We analyse a multi-model ensemble of idealized experiments and a set of simulations of the last millennium and we demonstrate similar global signatures and patterns of forced response in the tropical Pacific, of higher sensitivity for the solar forcing. In the idealized simulations, both solar and GHG forcing warm the equatorial Pacific, enhance precipitation in the central Pacific, and weaken and shift the Walker circulation eastward. Centennial variations in the solar forcing over the last millennium cause similar patterns of enhanced equatorial precipitation and slowdown of the Walker circulation in response to periods with stronger solar forcing. Similar forced patterns albeit of considerably weaker magnitude are identified for variations in GHG concentrations over the 20th century, with the lower sensitivity explained by fast atmospheric adjustments. These findings differ from previous studies that have typically suggested divergent responses in tropical precipitation and circulation between the solar and GHG forcings. We conclude that tropical Walker circulation and precipitation might be more susceptible to solar variability rather than GHG variations during the last-millennium, assuming comparable global mean surface temperature changes

    A 3-D evaluation of the MACC reanalysis dust product over Europe, northern Africa and Middle East using CALIOP/CALIPSO dust satellite observations

    Get PDF
    The MACC reanalysis dust product is evaluated over Europe, northern Africa and the Middle East using the EARLINET-optimized CALIOP/CALIPSO pure dust satellite-based product LIVAS (2007–2012). MACC dust optical depth at 550nm (DOD550) data are compared against LIVAS DOD532 observations. As only natural aerosol (dust and sea salt) profiles are available in MACC, here we focus on layers above 1kma.s.l. to diminish the influence of sea salt particles that typically reside at low heights. So, MACC natural aerosol extinction coefficient profiles at 550nm are compared against dust extinction coefficient profiles at 532nm from LIVAS, assuming that the MACC natural aerosol profile data can be similar to the dust profile data, especially over pure continental regions. It is shown that the reanalysis data are capable of capturing the major dust hot spots in the area as the MACC DOD550 patterns are close to the LIVAS DOD532 patterns throughout the year. MACC overestimates DOD for regions with low dust loadings and underestimates DOD for regions with high dust loadings where DOD exceeds  ∼ 0.3. The mean bias between the MACC and LIVAS DOD is 0.025 ( ∼ 25%) over the whole domain. Both MACC and LIVAS capture the summer and spring high dust loadings, especially over northern Africa and the Middle East, and exhibit similar monthly structures despite the biases. In this study, dust extinction coefficient patterns are reported at four layers (layer 1: 1200–3000ma.s.l., layer 2: 3000–4800ma.s.l., layer 3: 4800–6600m a.s.l. and layer 4: 6600–8400ma.s.l.). The MACC and LIVAS extinction coefficient patterns are similar over areas characterized by high dust loadings for the first three layers. Within layer 4, MACC overestimates extinction coefficients consistently throughout the year over the whole domain. MACC overestimates extinction coefficients compared to LIVAS over regions away from the major dust sources while over regions close to the dust sources (the Sahara and Middle East) it underestimates strongly only for heights below  ∼ 3–5kma.s.l. depending on the period of the year. In general, it is shown that dust loadings appear over remote regions and at heights up to 9kma.s.l. in MACC contrary to LIVAS. This could be due to the model performance and parameterizations of emissions and other processes, due to the assimilation of satellite aerosol measurements over dark surfaces only or due to a possible enhancement of aerosols by the MACC assimilation system

    A Study of the Effects of Rain, Snow and Hail on the Atmospheric Electric Field near Ground

    No full text
    The purpose of the present study is to investigate the impact of rain, snow and hail on potential gradient (PG), as observed in a period of ten years in Xanthi, northern Greece. An anticorrelation between PG and rainfall was observed for rain events that lasted several hours. When the precipitation rate was up to 2 mm/h, the decrease in PG was between 200 and 1300 V/m, in most cases being around 500 V/m. An event with rainfall rates up to 11 mm/h produced the largest drop in PG, of 2 kV/m. Shortly after rain, PG appeared to bounce back to somewhat higher values than the ones of fair-weather conditions. A decrease in mean hourly PG was observed, which was around 2–4 kV/m during the hail events which occurred concurrently with rain and from 0 to 3.5 kV/m for hail events with no rain. In the case of no drop, no concurrent drop in temperature was observed, while, for the other cases, it appeared that, for each degree drop in temperature, the drop in hourly mean PG was 1000 V/m; hence, we assume that the intensity of the hail event regulates the drop in PG. The frequency distribution of 1-minute PG exhibits a complex structure during hail events and extend from −18 to 11 kV/m, with most of the values in the negative range. During snow events, 1-minute PG exhibited rapid fluctuations between high positive and high negative values, its frequency distribution extending from −10 to 18 kV/m, with peaks at −10 and 3 kV/m

    On the Impact of Bell Sound on Ambient Particulates

    Get PDF
    Here the authors examine whether bell sounds can have an impact onambient aerosol levels and size distribution under atmospheric conditions.The authors present calculation results for acoustic coagulation by churchbell sounds for a range of ambient aerosol types. The results show thatfor orthokinetic sonic agglomeration, while the frequency spectrum ofchurch bells is ideal for causing coagulation of ambient aerosols, the soundpressure level (SPL) becomes too low for an effect. However, for verypolluted conditions, at extremely short distances from the bell dust aerosolscan readily undergo sonic coagulation

    Investigation of Pre-Earthquake Ionospheric and Atmospheric Disturbances for Three Large Earthquakes in Mexico

    No full text
    The purpose of the present study is to investigate simultaneously pre-earthquake ionospheric and atmospheric disturbances by the application of different methodologies, with the ultimate aim to detect their possible link with the impending seismic event. Three large earthquakes in Mexico are selected (8.2 Mw, 7.1 Mw and 6.6 Mw during 8 and 19 September 2017 and 21 January 2016 respectively), while ionospheric variations during the entire year 2017 prior to 37 earthquakes are also examined. In particular, Total Electron Content (TEC) retrieved from Global Navigation Satellite System (GNSS) networks and Atmospheric Chemical Potential (ACP) variations extracted from an atmospheric model are analyzed by performing statistical and spectral analysis on TEC measurements with the aid of Global Ionospheric Maps (GIMs), Ionospheric Precursor Mask (IPM) methodology and time series and regional maps of ACP. It is found that both large and short scale ionospheric anomalies occurring from few hours to a few days prior to the seismic events may be linked to the forthcoming events and most of them are nearly concurrent with atmospheric anomalies happening during the same day. This analysis also highlights that even in low-latitude areas it is possible to discern pre-earthquake ionospheric disturbances possibly linked with the imminent seismic events
    corecore