42 research outputs found

    An ecologically valid examination of event-based and time-based prospective memory using immersive virtual reality:The effects of delay and task type on everyday prospective memory

    Get PDF
    Recent research has focused on assessing either event- or time-based prospective memory (PM) using laboratory tasks. Yet, the findings pertaining to PM performance on laboratory tasks are often inconsistent with the findings on corresponding naturalistic experiments. Ecologically valid neuropsychological tasks resemble the complexity and cognitive demands of everyday tasks, offer an adequate level of experimental control, and allow a generalisation of the findings to everyday performance. The Virtual Reality Everyday Assessment Lab (VR-EAL), an immersive virtual reality neuropsychological battery with enhanced ecological validity, was implemented to comprehensively assess everyday PM (i.e., focal and non-focal event-based, and time-based). The effects of the length of delay between encoding and initiating the PM intention and the type of PM task on everyday PM performance were examined. The results revealed that everyday PM performance was affected by the length of delay rather than the type of PM task. The effect of the length of delay differentially affected performance on the focal, non-focal, and time-based tasks and was proportional to the PM cue focality (i.e., semantic relationship with the intended action). This study also highlighted methodological considerations such as the differentiation between functioning and ability, distinction of cue attributes, and the necessity of ecological validity.Comment: 9 Figures, 4 Table

    Leveraging Semantic Web Service Descriptions for Validation by Automated Functional Testing

    Get PDF
    Recent years have seen the utilisation of Semantic Web Service descriptions for automating a wide range of service-related activities, with a primary focus on service discovery, composition, execution and mediation. An important area which so far has received less attention is service validation, whereby advertised services are proven to conform to required behavioural specifications. This paper proposes a method for validation of service-oriented systems through automated functional testing. The method leverages ontology-based and rule-based descriptions of service inputs, outputs, preconditions and effects (IOPE) for constructing a stateful EFSM specification. The specification is subsequently utilised for functional testing and validation using the proven Stream X-machine (SXM) testing methodology. Complete functional test sets are generated automatically at an abstract level and are then applied to concrete Web services, using test drivers created from the Web service descriptions. The testing method comes with completeness guarantees and provides a strong method for validating the behaviour of Web services

    Brokerage for Quality Assurance and Optimisation of Cloud Services: An Analysis of Key Requirements

    Get PDF
    As the number of cloud service providers grows and the requirements of cloud service consumers become more complex, the latter will come to depend more and more on the intermediation services of cloud service brokers. Continuous quality assurance and optimisation of services is becoming a mission-critical objective that many consumers will find difficult to address without help from cloud service intermediaries. The Broker@Cloud project envisages a software framework that will make it easier for cloud service intermediaries to address this need, and this paper provides an analysis of key requirements for this framework. We discuss the methodology that we followed to capture these requirements, which involved defining a conceptual service lifecycle model, carrying out a series of Design Thinking workshops, and formalising requirements based on an agile requirements information model. Then, we present the key requirements identified through this process in the form of summarised results

    Validation of the Virtual Reality Neuroscience Questionnaire:Maximum duration of immersive virtual reality sessions without the presence of pertinent adverse symptomatology

    Get PDF
    International audienceThere are major concerns about the suitability of immersive virtual reality (VR) systems (i.e., head-mounted display; HMD) to be implemented in research and clinical settings, because of the presence of nausea, dizziness, disorientation, fatigue, and instability (i.e., VR induced symptoms and effects; VRISE). Research suggests that the duration of a VR session modulates the presence and intensity of VRISE, but there are no suggestions regarding the appropriate maximum duration of VR sessions. The implementation of high-end VR HMDs in conjunction with ergonomic VR software seems to mitigate the presence of VRISE substantially. However, a brief tool does not currently exist to appraise and report both the quality of software features and VRISE intensity quantitatively. The Virtual Reality Neuroscience Questionnaire (VRNQ) was developed to assess the quality of VR software in terms of user experience, game mechanics, in-game assistance, and VRISE. Forty participants aged between 28 and 43 years were recruited (18 gamers and 22 non-gamers) for the study. They participated in 3 different VR sessions until they felt weary or discomfort and subsequently filled in the VRNQ. Our results demonstrated that VRNQ is a valid tool for assessing VR software as it has good convergent, discriminant, and construct validity. The maximum duration of VR sessions should be between 55 and 70 min when the VR software meets or exceeds the parsimonious cut-offs of the VRNQ and the users are familiarized with the VR system. Also, the gaming experience does not seem to affect how long VR sessions should last. Also, while the quality of VR software substantially modulates the maximum duration of VR sessions, age and education do not. Finally, deeper immersion, better quality of graphics and sound, and more helpful in-game instructions and prompts were found to reduce VRISE intensity. The VRNQ facilitates the brief assessment and reporting of the quality of VR software features and/or the intensity of VRISE, while its minimum and parsimonious cut-offs may appraise the suitability of VR software for implementation in research and clinical settings. The findings of this study contribute to the establishment of rigorous VR methods that are crucial for the viability of immersive VR as a research and clinical tool in cognitive neuroscience and neuropsychology

    Utilising stream reasoning techniques to underpin an autonomous framework for cloud application platforms

    Get PDF
    As cloud application platforms (CAPs) are reaching the stage where the human effort required to maintain them at an operational level is unsupportable, one of the major challenges faced by the cloud providers is to develop appropriate mechanisms for run-time monitoring and adaptation, to prevent cloud application platforms from quickly dissolving into a non-reliable environment. In this context, the application of intelligent approaches to Autonomic Clouds may offer promising opportunities. In this paper we present an approach to providing cloud platforms with autonomic capabilities, utilising techniques from the Semantic Web and Stream Reasoning research fields. The main idea of this approach is to encode values, monitored within cloud application platforms, using Semantic Web languages, which then allows us to integrate semantically-enriched observation streams with static ontological knowledge and apply intelligent reasoning. Using such run-time reasoning capabilities, we have developed a conceptual architecture for an autonomous framework and describe a prototype solution we have constructed which implements this architecture. Our prototype is able to perform analysis and failure diagnosis, and suggest further adaptation actions. We report our experience in utilising the Stream Reasoning technique in this context as well as further challenges that arise out of our work

    Technological competence is a precondition for effective implementation of virtual reality head mounted displays in human neuroscience:A technological review and meta-analysis

    Get PDF
    International audienceImmersive virtual reality (VR) emerges as a promising research and clinical tool. However, several studies suggest that VR induced adverse symptoms and effects (VRISE) may undermine the health and safety standards, and the reliability of the scientific results. In the current literature review, the technical reasons for the adverse symptomatology are investigated to provide suggestions and technological knowledge for the implementation of VR head-mounted display (HMD) systems in cognitive neuroscience. The technological systematic literature indicated features pertinent to display, sound, motion tracking, navigation, ergonomic interactions, user experience, and computer hardware that should be considered by the researchers. Subsequently, a meta-analysis of 44 neuroscientific or neuropsychological studies involving VR HMD systems was performed. The meta-analysis of the VR studies demonstrated that new generation HMDs induced significantly less VRISE and marginally fewer dropouts. Importantly, the commercial versions of the new generation HMDs with ergonomic interactions had zero incidents of adverse symptomatology and dropouts. HMDs equivalent to or greater than the commercial versions of contemporary HMDs accompanied with ergonomic interactions are suitable for implementation in cognitive neuroscience. In conclusion, researchers' technological competency, along with meticulous methods and reports pertinent to software, hardware, and VRISE, are paramount to ensure the health and safety standards and the reliability of neuroscientific results
    corecore