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Abstract. Recent years have seen the utilisation of Semantic Web Service 
descriptions for automating a wide range of service-related activities, with a 
primary focus on service discovery, composition, execution and mediation. An 
important area which so far has received less attention is service validation, 
whereby advertised services are proven to conform to required behavioural 
specifications.  This paper proposes a method for validation of service-oriented 
systems through automated functional testing. The method leverages ontology-
based and rule-based descriptions of service inputs, outputs, preconditions and 
effects (IOPE) for constructing a stateful EFSM specification. The specification 
is subsequently utilised for functional testing and validation using the proven 
Stream X-machine (SXM) testing methodology. Complete functional test sets 
are generated automatically at an abstract level and are then applied to concrete 
Web services, using test drivers created from the Web service descriptions.  The 
testing method comes with completeness guarantees and provides a strong 
method for validating the behaviour of Web services.  

Keywords:  Semantic Web Services, Web service testing, Service Validation   

1   Introduction 

The vision in Semantic Web Services (SWS) research [13], [14] is to bring formal 
semantics into the Web services realm such that service characteristics can be 
explicated in an unambiguous, computer-interpretable manner that allows for 



automating a broad range of service design-time and run-time activities. Recent years 
have seen the development of numerous SWS frameworks that aim to address this 
goal. The most prominent ones have been OWL-S [15], WSMO [4], and WSDL-S 
[1]. The latter served as the basis for the recently ratified W3C Recommendation of 
SAWSDL [7] which is currently the only standard in the area. Research around SWS 
frameworks has mostly focused on the development of methods and tools for enabling 
automated Web service discovery, composition, and execution [13], [14], while the 
areas of service testing and validation have remained largely unexplored.  

The ability to validate that a Web service implementation conforms to given 
functional/behavioural specifications through functional testing is instrumental in 
engineering dependable service-based systems. However, the process of Web service 
testing is currently highly error-prone and laborious, as most of the activities, and 
especially the construction of test cases, need to be carried out manually. In this paper 
we show that in the presence of service descriptions with formal semantics, the 
process of generating test cases and performing validation through testing can be 
automated to a great extent. In particular, we propose a method for deriving a formal 
specification of a Web service's behaviour as a Stream X-machine (SXM) [9] model, 
by transforming ontology-based and rule-based descriptions of the service's inputs, 
outputs, preconditions, and effects (IOPE). The derived SXM model is utilised for 
automatically generating abstract test cases, which are executed against the deployed 
Web service to perform validation.  

An important aspect of our approach is the strength of the validation method, 
which stems from the completeness guarantees that the SXM testing method can 
provide. The SXM testing method is guaranteed to generate a complete, finite set of 
test cases able to reveal all inconsistencies among an SXM specification and an 
implementation under test. Another important aspect is the adoption and promotion of 
standards. The semantic descriptions of Web service IOPE from which the SXM 
model is derived, are encoded using an existing and a forthcoming standard from the 
Semantic Web technology stack. OWL [16] is employed for specifying the service’s 
data model, and RIF-PRD (Rule Interchange Format – Production Rule Dialect) [21] 
is employed for specifying the service’s functionality. As a forthcoming standard for 
rule interchange, RIF [22] can assist in overcoming the impedance mismatch among 
today’s heterogeneous SWS frameworks, and can enable our approach to remain 
generic and even reusable with different frameworks like WSMO or OWL-S.  

The rest of this paper is organised as follows. Section 2 presents an overview of 
related works in the area of Web service testing, validation and verification that 
involves the use of semantic service descriptions. Section 3 discusses how stateful 
Web service behaviour can be represented in terms of IOPE, and how Semantic Web 
technologies such as OWL and RIF can be employed for this purpose, with the help 
of an example Web service. Section 4 provides an overview of the Stream X-machine 
modelling formalism which we adopt for modelling Web service behaviour and 
generating test cases in an automated way. Section 5 provides a detailed step-by-step 
description of the method of deriving an SXM model from the IOPE-based service 
description. Section 6 discusses the overall testing approach, the generation of test 
cases from the SXM model, and the way in which tests can be executed against a Web 
service. Finally, section 7 concludes the paper with a summary of the key points and 
an outlook to future research objectives.  



2   Related Work 

Methods and tools for Web service testing, verification and validation are essential for 
engineering and managing dependable service-based software applications, and are 
receiving increasing attention. In this section we consider related research works that 
address the validation of Web services through model-based testing, where a model is 
used to generate a set of test cases.  

Heckel and Mariani [8] employ graph transformation rules to model the behaviour 
of individual operations of stateful Web services in terms of preconditions and 
updates on the world state. The graph transformation rules are used to generate test 
cases using domain partitioning and data-flow criteria. The method is used in a 
registry-based testing approach to validate conformance of advertised services.  

Bertolino et al [2] also propose a registry-based testing approach where the 
provider augments the WSDL document with behavioural descriptions in a UML 2.0 
Protocol State Machine (PSM) diagram, which is translated to a Symbolic Transition 
System (STS). The registry uses the STS model to generate a set of test cases, which 
are run on the Web service under test for validating behavioural conformance.  

Wang et al [23] use the OWL-S description of a composite service process as a 
starting point to derive an equivalent Petri-net model through an informal 
transformation algorithm. The Petri-net model is then used to generate test cases and 
perform model-checking.  

Narayanan and McIlraith [17] also describe a manual method to construct a Petri 
net from descriptions in DAML-S (the precursor of OWL-S). They propose using this 
model for a number of activities, including testing. However, no testing approach and 
test-case generation algorithm is described, since the authors assume that a test suite 
already exists and the model serves as a test oracle to predict the expected outputs.  

Sinha and Paradkar [19] utilise IOPE-based descriptions of service operations 
using SWRL (Semantic Web Rule Language) rules and OWL ontologies to derive an 
extended finite state machine (EFSM) model. The authors propose various manual or 
automated techniques for generating test cases based on the EFSM model, with 
varying adequacy criteria, coverage and completeness. The generated EFSM consists 
of a single state and lacks information on explicit sequencing of operations (or 
conversation protocol) necessary to guide state-based testing.  

Keum et al [11] provide a high-level, manual algorithm for constructing a multi-
state EFSM model from plain WSDL specifications, with additional information 
provided by the user, who fills a WSDL analysis template. The described algorithm 
mainly focuses on the derivation of states, while little or no detail is given for 
obtaining the transitions and other EFSM elements.  

In this paper we propose a method that utilises IOPE-based semantic descriptions 
of Web service operations that are encoded using RIF-PRD to generate a multi-state 
Stream X-machine model. In addition to the states and transitions that define a finite 
state machine, other constructs which are specific to SXMs, such as memory and 
processing functions, are also derived. The SXM testing strategy [9] allows for the 
derivation of a test set with completeness guarantees, making it possible to prove 
functional conformance of an implementation to the SXM model. The automated 
generation of test cases and their execution on a Web service under test are supported 
by an existing suite of tools. 



3   IOPE-based Descriptions of Web Service Functionality 

A popular approach for describing functional properties of stateful and conversational 
Web services is in terms of service inputs, outputs, preconditions and effects (IOPE) 
[20]. IO and PE descriptions are means to represent two different aspects of a service: 
(i) the information transformation that it produces through the inputs it consumes and 
the outputs it generates, and (ii) the state-wise conditions that need to hold before 
service operations can be invoked (preconditions) as well as the state changes that 
will be applied after the invocation (effects).  

Descriptions of inputs and outputs allow service providers to explicate the 
semantics of the data vocabulary that the service operates on, independently of the 
service’s behaviour. This type of specification can be provided for any kind of 
service, ranging from simple information-providing services to complex transactional 
services, and enables high-precision service discovery through semantic 
matchmaking, as well as run-time data mediation through semantic adapters. On the 
other hand, descriptions of preconditions and effects are only useful for Web services 
whose behaviour depends on the state of the world, and whose execution may cause 
changes to it. Examples of stateful Web services with side-effects could be an atomic 
ticket reservation service that consists of a single WSDL operation, or a bank account 
management service that comprises multiple WSDL operations. Our approach is 
focused on behavioural validation for services of the latter type, i.e. conversational 
Web services that maintain information about internal state between invocations of 
operations, and enforce a specific interaction protocol (choreography) with the service 
consumer.  

Variations of the IOPE model are employed within all of the existing SWS 
frameworks. OWL-S process descriptions are based on an Input, Output, Precondition 
and Result (IOPR) model. A Result is associated to some Condition specifying the 
premises under which the result can occur, the corresponding Output, and the Effects 
to be produced. In descriptions of WSMO Goals and Capabilities a more fine-grained 
notion of Pre-conditions, Assumptions, Post-conditions, and Effects is employed to 
define state-wise constraints. In WSDL-S and SAWSDL, preconditions and effects 
can be associated with a Web service operation via a modelReference annotation on a 
WSDL portType, in the same way in which inputs and outputs are specified via 
modelReference annotations on WSDL operations or XSD elements.  

In all cases, the representation of IOPE requires a combination of ontology 
language for encoding descriptions of inputs and outputs, and rule language for 
encoding preconditions and effects as logic-based expressions. Each of the previously 
mentioned SWS frameworks adopts a different approach to achieve this. OWL-S 
requires the representation of IO using OWL and allows encoding of logical 
expressions (treated as literals) for PE in a variety of rule languages, although it 
appears that only SWRL-like expressions have actually been supported in 
implemented OWL-S tools. In WSMO, Preconditions, Postconditions, Assumptions 
and Effects involve the specification of axioms as First Order Logic formulae that can 
be encoded in WSML dialects such as WSML-Rule or WSML-Flight. In WSDL-S 
and SAWSDL the format of the logical expressions is left to be defined by the 
modellers, and their semantic representation language of choice.  



The kind of rules and rule language to be used for representing preconditions and 
effects depends on the intended semantics of the Web service’s effects. We can 
generally distinguish among the use of deductive (inference) rules which have logical, 
non-monotonic semantics, and the use of reactive rules that carry operational, non-
monotonic semantics. Reactive rules can be Event-Condition-Action (ECA) rules, 
which allow modelling changes to the state of the world as a reaction to an event, or 
Condition-Action (CA) rules, also known as production rules, which allow modelling 
state changes without reference to a particular event. A significant difference among 
deductive and reactive rules is found in the conclusion part of the rule. Conclusions of 
deductive rules contain only logical statements that should be true, whereas 
conclusions of reactive rules contain actions can add, delete, or modify facts in the 
knowledge base, and have other side-effects [21].  

Our approach in this paper utilises production rules for specifying the behaviour of 
stateful and conversational Web services, and the rule language that we adopt is the 
Rule Interchange Format - Production Rule Dialect (RIF-PRD) [21]. RIF [22] is a 
forthcoming standard for the representation and exchange of rules that is currently 
under development by the W3C RIF Working Group, and is put forward as the next 
generation rule language for the Semantic Web. At the time of this writing RIF-PRD 
is still work in progress, but expected to become a W3C recommendation soon.  

An important reason for using RIF-PRD is that the semantics of PRD rules can be 
specified as a labelled transition system [18], where states correspond to possible 
states of working memory and transitions correspond to actions taken by the rules to 
assert/retract terms. The fact that PRD has operational semantics makes the definition 
of an equivalence relationship between PRD and SXM specifications possible, and 
thus enables to prove the correctness of the transformation. Moreover, RIF-PRD can 
serve as a standard interface language between existing SWS formalisms and tools for 
derivation of SXM models and generation of test cases, thus bringing added value to 
existing SWS frameworks by allowing semantic descriptions to be reused for the 
purposes of testing and validation. 

Example Description of a Stateful Web Service 

To provide an example of a stateful Web service whose functionality is modelled 
using the approach described above, consider the case of a service that allows 
performing elementary operations on a bank account. For simplicity, let us assume 
that the service interface comprises five operations: (i) open, (ii) deposit, (iii) 
withdraw, (iv) getBalance, and (v) close. When an account is created it is initialised as 
inactive and therefore needs to be set to active (opened) before any transaction can be 
performed. The deposit of an amount will result in increasing the balance of the 
account as appropriate, while the withdrawal of an amount can take place only if the 
amount does not exceed the balance, and will result in reducing the balance 
accordingly. A successful deposit or withdrawal will also result in having the updated 
balance returned to the client as part of the invocation response message. Finally, an 
account can be closed only if its balance is zero, and once closed cannot be re-
activated. The listing below provides an encoding of preconditions and effects for this 
example Web service, using RIF-PRD presentation syntax. 

 



Prefix(func http://www.w3.org/2007/rif-builtin-function#) 
Prefix(pred http://www.w3.org/2007/rif-builtin-predicate#) 
  
 
(* wsdl:operation open *) 
Forall  ?account ?status ?balance ?request ( 
And     ( ?account#Account 
    ?account[hasStatus->?status] 

?account[hasBalance->?balance] 
    ?request#OpenRequest ) 
If      ( External (pred:string-equal(?status "INITIAL") ) 
Then Do ( Retract (?account[hasStatus->?status]) 
         Assert (?account[hasStatus->"ACTIVE"]) 
         Retract (?account[hasBalance->?balance]) 
        Assert (?account[hasBalance->0]) 
         Retract (?request) 
    (?response New(?response#OpenResponse)) 
    Assert (?response[hasMessage->"Account opened"]) ) ) 

 
(* wsdl:operation close *) 
Forall   ?account ?status ?balance ?request ( 
And     ( ?account#Account 
         ?account[hasStatus->?status]  
         ?account[hasBalance->?balance] 
        ?request#CloseRequest ) 
If And  ( External (pred:string-equal(?status "ACTIVE") 
         External (pred:numeric-equal(?balance 0) ) 
Then Do ( Retract (?account[hasStatus->?status])  
         Assert (?account[hasStatus->"CLOSED"]) 
         Retract (?request) 
         (?response New(?response#CloseResponse)) 
         Assert (?response[hasMessage->"Account closed"]) ) ) 

 
(* wsdl:operation getBalance *) 
Forall   ?account ?status ?balance ?request ( 
And     ( ?account#Account 
         ?account[hasStatus->?status]  
         ?account[hasBalance->?balance] 
         ?request#GetBalanceRequest ) 
If      ( External (pred:string-equal(?status "ACTIVE") ) 
Then Do ( Retract (?request) 
         (?response New(?response#GetBalanceResponse)) 
         Assert (?response[hasAmount->?balance) ) ) 

 
(* wsdl:operation deposit *) 
Forall   ?account ?status ?balance ?request ?depositAmount ( 
And     ( ?account#Account 
         ?account[hasStatus->?status]  
         ?account[hasBalance->?balance] 
         ?request#DepositRequest 
         ?request[hasAmount->?depositAmount] ) 
If And  ( External (pred:string-equal(?status "ACTIVE") 
         External (pred:numeric-greater-than(?depositAmount 0) ) 
Then Do ( Retract (?account[hasBalance->?balance])    

Assert (?account[hasBalance->External(func:numeric-add(?balance 
?depositAmount))]) 

    Retract (?request) 
    (?response New(?response#DepositResponse)) 
    (?newBalance ?account[hasBalance->?newBalance]) 
    Assert (?response[hasAmount->?newBalance) ) ) 

 
(* wsdl:operation withdraw *) 
Forall   ?account ?status ?balance ?request ?withdrawAmount ( 
And     ( ?account#Account 
    ?account[hasStatus->?status]  
    ?account[hasBalance->?balance] 
    ?request#WithdrawRequest 
    ?request[hasAmount->?withdrawAmount] ) 
If And  ( External (pred:string-equal(?status "ACTIVE") 



External (pred:numeric-greater-than-or-equal(?balance 
?withdrawAmount) ) 

Then Do ( Retract (?account[hasBalance->?balance])    
Assert(?account[hasBalance->External(func:numeric-subtract(?balance 
?withdrawAmount))]) 

    Retract (?request) 
    (?response New(?response#WithdrawResponse)) 
    (?newBalance ?account[hasBalance->?newBalance]) 
    Assert (?response[hasAmount->?newBalance) ) ) 

  
In addition to the rule-based description of service behaviour that is encoded in 

RIF-PRD, we assume the existence of an ontology-based description of the service’s 
data model, encoded in OWL. The ontology is to be used for two purposes: i) 
specifying the structure of the service’s inputs, outputs and internal state-related 
variables which are not visible on its interface, and ii) specifying the set of facts that 
hold when the service is found at its initial state (e.g. after original deployment or 
resetting). This information is utilised for the derivation of the SXM model, as 
described in section 5. The following table lists the OWL entities that the ontology 
would need to comprise:  

Table 1.  Ontology entities.  

Classes (11) 
Account, OpenRequest, OpenResponse, DepositRequest, 
DepositResponse, GetBalanceRequest, GetBalanceResponse, 
WithdrawRequest, WithdrawResponse, CloseRequest, CloseResponse 

Datatype 
properties (4) 

hasStatus (domain: Account, range: string enumeration 
{“INITIAL”, “CLOSED”, “FALSE”}),  
hasBalance (domain: Account, range: nonNegativeInteger),  
hasAmount (domain: {GetBalanceResponse, DepositRequest, 
DepositResponse, WithdrawRequest, WithdrawResponse}, range: 
nonNegativeInteger) 
hasMessage (domain: {OpenResponse, CloseResponse}, range: 
string) 

Individuals (1) acc1 (asserted Account individual, hasStatus: “INITIAL”, 
hasBalance: 0) 

 
Note that the RIF-PRD rules are not meant to refer to the ontology classes and 

properties in a direct way. Rather, they are meant to refer to in-memory 
representations of these entities which are created when the transformation procedure 
is initiated by reading-in the ontology contents. This hybrid integration approach has 
been chosen since RIF-PRD does not support importing of OWL ontologies in RIF-
PRD documents and using ontology entities within rules, as is the case with RIF-BLD 
(Basic Logic Dialect). The reason for this is the incompatible semantics of OWL and 
RIF-PRD; OWL has monotonic model theoretic semantics, while production rules 
have non-monotonic operational semantics (due to the actions performed).  

To complete the description of the example Web service, we also need a way to 
associate each of the production rules with the corresponding WSDL operation whose 
behaviour is meant to be described. This association can be specified by placing 
SAWSDL modelReference annotations on the corresponding wsdl:operation 
elements, and adopting a convention for identifying and referencing different rules 
within a RIF XML document (e.g. through XPointer fragment identifiers). Semantic 
annotations on the WSDL document can also serve for specifying the indirect linkage 
among the rule-based description of service behaviour and the ontology-based 
description of the service data model, which needs to be known for the SXM 



derivation. A complete description of an SAWSDL-based approach for linking the 
WSDL, RIF, and OWL artefacts is however beyond the scope of this paper. 

4   Stream X-machines and Web Service Modelling 

Stream X-machines (SXMs) are a computational model capable of representing both 
the data and the control of a system. SXMs are special instances of the X-machines 
introduced in 1974 by Samuel Eilenberg [6]. They employ a diagrammatic approach 
of modelling control flow by extending the expressive power of finite state machines. 
In contrast to finite state machines, SXMs are capable of modelling non-trivial data 
structures by employing a memory attached to the state machine. Moreover, 
transitions between states are not labelled with simple input symbols but with 
processing functions. Processing functions receive input symbols and read memory 
values, and produce output symbols while modifying memory values.  

Apart from being formal as well as proven to possess the computational power of 
Turing machines [9], SXMs offer a highly effective testing method for verifying the 
conformance of a system’s implementation against a specification. The SXM testing 
method, which is a generalization of the W-method [3], is guaranteed to generate a 
complete, finite set of test cases that can reveal all inconsistencies among an SXM 
specification and an implementation under test [10]. More details about the derivation 
of the test sequences can be found in [5].  

Parallels can be drawn among a stateful Web service and a Stream X-machine, 
since they both accept inputs and produce outputs, while performing specific actions 
and moving from one internal state to another. SXM inputs and outputs correspond to 
SOAP request and response messages. SXM processing functions correspond to Web 
service operation invocations in specific contexts (an operation invocation may map 
to more than one processing functions because of the potentially different input 
parameters and the different state).  In [5] the process of modelling and test generation 
for a stateful Web service are demonstrated in more detail, while in [12] we present 
an approach that integrates SXM-based modelling and test generation for extending a 
service registry with functional testing and behavioural verification capabilities.  

5   Derivation of an SXM Model from an IOPE Description  

This section describes the steps of the transformation of IOPE-based descriptions of 
Web service behaviour to SXM models. The example of the Account Web service is 
used throughout, for illustration purposes.  
 
Identifying State Variables. All properties pi of frame atomic formulas t[p1->v1 … 
pn->vn] that appear in the action part of all rules are identified as state variables.  
Excluded are the frames associated to the reserved objects ?request and ?response, 
which represent inputs and outputs, respectively.   

In the account service example two state variables are identified: hasStatus and 
hasBalance. 



 
Partition Analysis of State Variables. The domains of the state variables are 
determined by consulting their respective ranges in the datatype properties section of 
the OWL ontology.   Then, the domain of each state variable pi is partitioned based 
on the preconditions of the production rules.  For each variable vi bound to a property 
pi, which is a state variable, all formulas in the precondition of the rules are evaluated.  

In the account example, the domains of the state variables are:  
hasStatus ::= {INITIAL, ACTIVE, CLOSED} and hasBalance::= 0…∞.  

 
The preconditions may restrict the state variables to actual values or ranges of 

values. In the rules of the account service example, the variables ?status and 
?balance bound to the state variables hasStatus and hasBalance are evaluated in 
the following conditions: 

 
hasStatus: 

• ?status = INITIAL 
• ?status = ACTIVE 

hasBalance: 
• ?balance = 0 
• ?balance ≥ ?withdrawAmount AND ?withdrawAmount > 0 

 
By application of naive arithmetic rules on the last condition listed above, it can be 

deduced that ?balance>0. It should be noted that mathematical deductions like this 
can be hard to automate, and would require manual intervention. After examining the 
domains of the state variables and inferring the complements, the final partitions are:  

 
hasStatus: {INITIAL}, {ACTIVE}, {CLOSED} 
hasBalance: {0}, {x | x>0} 

 
Identifying Preliminary States. The preliminary state space is defined as the product 
of the state variable partitions. The initial state q0 is determined from the initial values 
of the respective state variables, which are specified in an individual in the OWL 
ontology. 

In our example there are six preliminary states, which are labelled as INITIAL_0, 
INITIAL_>0, ACTIVE_0,  ACTIVE_>0, CLOSED_0, and CLOSED_>0.  

In the account specification the initial value for hasStatus is INITIAL, and for 
hasBalance is zero. Therefore state INITIAL_0 is the initial state.  
 
Determining Inputs and Outputs. An input (output) is defined for each service 
operation request (response) specified in the RIF rules.  Inputs appear at the bindings 
and outputs at the action parts of the rules. 

The inputs in the example are:  
 

OpenRequest() 
GetBalanceRequest() 
DepositRequest(depositAmount) 
WithdrawRequest(withdrawAmount) 
CloseRequest()  
 



The outputs are: 
 

OpenResponse() 
GetBalanceResponse(balance) 
DepositResponse(newBalance) 
WithdrawResponse(newBalance) 
CloseResponse() 

 
Determining Transition Pre-States.  An input is accepted at a state (pre-state) iff the 
preconditions are satisfied at the pre-state.  In that case the input triggers a transition 
of the Stream X-machine from the pre-state to another state (the post-state). For each 
input (service operation invocation) and each state, it is determined whether the input 
is accepted at that state.   

For example, the preconditions of the rule for input OpenRequest are 
(hasStatus=INITIAL), so they are satisfied at states INITIAL_0 and INITIAL_>0. 
On the other hand, input WithdrawRequest is a different case. By applying the 
previously mentioned mathematical deduction we can infer the following:  

 
hasBalance≥withdrawAmount AND withdrawAmount>0  hasBalance>0  

 
Therefore, the input WithdrawRequest is only accepted at pre-state ACTIVE_>0. The 

inputs and the pre-states at which they trigger a transition are as follows:  
 

OpenRequest: {INITIAL_0, INITIAL_>0} 
GetBalanceRequest: {ACTIVE_0, ACTIVE_>0} 
DepositRequest: {ACTIVE_0, ACTIVE_>0} 
WithdrawRequest: {ACTIVE_>0} 
CloseRequest: {ACTIVE_0}  

 
State Merging.  Preliminary states in which the same set of inputs is accepted are 
merged, since these states cannot be distinguished. 

In our example, in both states INITIAL_0 and INITIAL_>0 the set of inputs 
{OpenRequest} is accepted. Therefore, those two states are merged into one. The 
resulting states are: 

 
INITIAL: (hasStatus=INITIAL, hasBalance=*) 
ACTIVE_0: (hasStatus=ACTIVE, hasBalance=0) 
ACTIVE_>0: (hasStatus=ACTIVE, hasBalance>0) 
CLOSED:  (hasStatus=CLOSED, hasBalance=*) 

 
where * denotes any value. 
 
Determining Transition Post-States. For each state-input pair identified in a 
previous step, we determine the possible transition destinations, or post-states, by 
applying the effects of the invoked operation on the pre-state. Isolated states (there 
does not exist any sequence of transitions starting from q0 and ending in that state) 
are removed from the model. 

In our example, applying these effects potentially involves reasoning with standard 
operations, such as the mathematical operations of addition and subtraction. 
Accepting input OpenRequest at pre-state INITIAL: (hasStatus=INITIAL) and 



applying the effects (hasStatus  ACTIVE and hasBalance  0) results in a post-
state where hasStatus=ACTIVE and hasBalance=0. This post-state matches exactly 
with the state ACTIVE_0. On the other hand, applying the effects of accepting the 
input WithdrawRequest, and appealing to mathematical rules for subtraction, there are 
two possible post-states (ACTIVE_0 and ACTIVE_>0), depending on the amount 
withdrawn. The two different transitions start from the same state, so they are labelled 
by different processing functions, for instance, WithdrawRequest1 and 
WithdrawRequest2. Using the same approach for the rest of the state-input pairs, the 
resulting transitions are as in the following table.  

Table 3.  Transition pre-states and post-states.  

Input Pre-State  Effects Post-State 

OpenRequest INITIAL hasStatus  ACTIVE 
hasBalance  0 

ACTIVE_0 

GetBalanceRequest 
ACTIVE_0 - ACTIVE_>0 
ACTIVE_>0 - ACTIVE_>0 

DepositRequest 
ACTIVE_0 hasBalance  

hasBalance+depositAmount 
ACTIVE_>0 

ACTIVE_>0 hasBalance  
hasBalance+depositAmount 

ACTIVE_>0 

WithdrawRequest 
ACTIVE_>0 hasBalance   

hasBalance–withdrawAmount 
ACTIVE_0 

ACTIVE_>0 hasBalance   
hasBalance–withdrawAmount 

ACTIVE_>0 

CloseRequest ACTIVE hasStatus  CLOSED CLOSED 

 
The final states and transitions define the associated finite automaton of the Stream 

X-machine, as illustrated in Fig. 1. 
 

  
Fig. 1. State diagram of the SXM model that is the result of the transformation.  

 
Determining Memory. The memory consists of all the state variables, except for 
those whose all possible values were covered by the partitions identified during 
partition analysis.  

In the account service example, the enumerated state variable hasStatus was 
partitioned into all its possible values. Therefore, only state variable hasBalance is 
put in the memory. The initial memory m0 is the initial value of hasBalance, i.e. m0 = 
(0). 



 
Determining Guard Conditions for Processing Functions.  For each state-input 
pair where the input triggers a unique transition, the guard conditions are the same as 
the corresponding rule preconditions; any predicates already satisfied in the pre-state 
are omitted.  

For instance, when attempting to accept input OpenRequest at state INITIAL, all 
preconditions are already satisfied at the pre-state, so the guard condition is empty.  

For each state-input pair where the input triggers more than one transition, the 
preconditions have to be split into mutually disjoint guard conditions, one for each 
processing function. For each transition, starting from its post-state, the effects are 
“undone” (i.e. the updates of the effects are inversed) and it is derived what should 
hold at the pre-state.  

This is the case with input WithdrawRequest(withdrawAmount). The only 
predicates which are not satisfied in the pre-state are (hasBalance≥withdrawAmount 
AND withdrawAmount>0). In the post-state of WithdrawRequest1, hasBalance>0, 
while in the post-state of WithdrawRequest2, hasBalance=0. The effect of accepting 
the input WithdrawRequest is: newBalance = hasBalance – withdrawAmount. 

Since the value of updated balance in the post-state of WithdrawRequest1 is greater 
than zero, then: 

 
(hasBalance - withdrawAmount)>0  hasBalance>withdrawAmount 

 
Thus, the guard condition of WithdrawRequest1 is (hasBalance>withdrawAmount 

AND withdrawAmount>0). Similarly it can be deduced that the guard condition of 
WithdrawRequest2 is (hasBalance=withdrawAmount AND withdrawAmount>0). 
 
Determining Memory Updates for Processing Functions. The memory updates of 
each processing function consist only of the effects which update the memory 
variables.  

For example, the effect of the rule for CloseRequest does not involve any memory 
variables, thus the memory update function is empty. Similarly, for input 
DepositRequest the memory update function is hasBalance  

hasBalance+depositAmount, which is the only action affecting memory variable 
hasBalance. 

6   Generation of Test Cases  

The main benefit of obtaining a Stream X-machine model of the Web service is the 
ability to automatically generate complete functional test sets. This formalism is 
associated with a complete testing strategy which under certain assumptions [9] is 
proven to find all faults in the implementation. In addition, the SXM model can be 
animated and thus serve as a test oracle for predicting the service’s outputs, which are 
compared with the real outputs returned by the service implementation. 

Test generation starts by applying the W-method [3] on the associated finite 
automaton of the SXM, where processing functions are considered as simple inputs. 



As a result, the test set X for the associated finite automaton consists of sequences of 
processing functions and is given by the formula:  

 
X = S(Φk+1 ∪ Φk ∪ … ∪ Φ ∪{ })W, 

 
where W is a characterization set, S a state cover of the associated finite automaton, 
and k is an estimate of maximum path length between redundant states in the 
implementation. A characterization set is a set of sequences of processing functions 
for which any two distinct states of the machine are distinguishable and a state cover 
is a set of sequences of processing functions such that all states are reachable from the 
initial state. The next step is to convert the sequences of processing functions to 
sequences of inputs. This is achieved by the fundamental test function as described in 
[9]. 

The above test generation procedure is supported by a suite of tools that we have 
developed in Java. The test generation tool takes as input an XML representation of 
the SXM model and automatically produces sequences of abstract input and expected 
output pairs. Another tool converts the abstract test cases to JUnit test cases. In order 
to execute the generated JUnit test cases on the Web service under test, a Java client 
stub is required as an adapter. We use the open source WSDL2Java API provided by 
Apache Axis2 to automatically generate a client stub, which can invoke Web service 
operations when its Java methods are called.  

In order to illustrate the generation of test cases for the account example, we have 
implemented and deployed a Web service that behaves according to the rule-based 
description provided in section 3. We have further created an SXM model based on 
the prescribed behaviour, generated test cases, and executed them on the deployed 
Web service. The table below lists the number of generated test sequences for 
different values of k, and the time taken to execute them. It should be noted that in all 
cases the time required for test generation was negligible (less than one second). 

Table 3.  Test sequences and execution times for different testing configurations.  

Value of k No. of test sequences Execution time  
k = 0 25 3.9 s 
k = 1 72 11.5 s 
k = 2 230 45.2 s 

7   Conclusions and Outlook 

Despite the significant amount of research interest in the area of Semantic Web 
Service technologies, and the numerous results already contributed towards 
automating service discovery, composition and mediation, the possibility of 
leveraging SWS descriptions for automated generation of test cases and behavioural 
validation has remained largely unexplored. In this paper we propose the use of 
Stream X-machines as a powerful behavioural modelling formalism for Web services, 
which can facilitate automated generation of test cases with completeness guarantees. 



The test cases can be used for performing validation of Web services through 
automated functional testing (in a black-box manner). We have described a method 
for deriving an SXM model from an IOPE-based description of a Web service’s 
functionality, and provided an example of encoding a stateful Web service’s IOPE 
using RIF-PRD and OWL, to subsequently serve as input to the transformation.  

The particular strengths of the presented approach can be summarised in three 
points. Firstly, a significant advantage of SXMs compared to other formalisms, is in 
the strength of their associated testing method, which can be used for proving 
functional equivalence among a specification and an implementation under test. This 
brings a significant advantage over other approaches which are not based on a formal 
theory of testing, or can only provide guarantees for weaker notions of equivalence. 
Secondly, the method of transforming an IOPE-based description of a Web service 
that has been encoded in RIF-PRD and OWL, into an SXM specification, makes our 
proposed approach generic and framework-independent. Given a service description 
compliant with some SWS framework, and a method of transforming such a 
description to one that is based on our presented modelling conventions, the 
derivation of an SXM model and generation of test cases will be possible. This is in 
contrast to other approaches for test case generation which are bound to specific SWS 
frameworks (e.g. OWL-S). Thirdly, the tasks of test case generation and test 
execution are readily supported by existing tools.  

As future work we intend to investigate certain aspects of the SXM derivation 
method in greater detail, especially those steps that appear to be most challenging to 
automate, such as the partitioning of domains for state variables. We will further 
focus on the formalisation of the algorithm, considering complexity and decidability 
properties, and providing a proof of equivalence among the original rule-based 
specification and the derived SXM model. We will finally work towards the 
implementation of tools that automate the transformation, as well as experimental 
validation and collection of empirical evidence concerning the effectiveness of the 
overall approach.  
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