17 research outputs found

    Driver Inattention During Vehicle Automation: How Does Driver Engagement Affect Resumption Of Control?

    Get PDF
    This driving simulator study, conducted as part of the EC-funded AdaptIVe project, investigated the effect of level of distraction during automation (Level 2 SAE) on drivers’ ability to assess automation uncertainty and react to a potential collision scenario. Drivers’ attention to the road was varied during automation in one of two driving screen manipulation conditions: occlusion by light fog and occlusion by heavy fog. Vehicle-based measures, drivers’ eye movements and response profiles to events after an automation uncertainty period were measured during a highly automated drive containing one of these manipulations, and compared to manual driving. In two of seven uncertainty events, a lead vehicle braked, causing a critical situation. Drivers' reactions to these critical events were compared in a between-subjects design, where the driving scene was manipulated for 1.5 minutes. Results showed that, during automation, drivers’ response profile to a potential collision scenario was less controlled and more aggressive immediately after the transition, compared to when they were in manual control. With respect to screen manipulation in particular, drivers in the heavy fog condition collided with the lead vehicle more often and also had a lower minimum headway compared to those in the light fog condition

    Optic flow speed modulates guidance level control: New insights into two-level steering

    Get PDF
    © 2016 American Psychological Association. Responding to changes in the road ahead is essential for successful driving. Steering control can be modeled using 2 complementary mechanisms: guidance control (to anticipate future steering requirements) and compensatory control (to stabilize position-in-lane). Drivers seem to rapidly sample the visual information needed for steering using active gaze patterns, but the way in which this perceptual information is combined remains unclear. Influential models of steering capture many steering behaviors using just 'far' and 'near' road regions to inform guidance and compensatory control respectively (Salvucci & Gray, 2004). However, optic flow can influence steering even when road-edges are visible (Kountouriotis, Mole, Merat, & Wilkie, 2016). Two experiments assessed whether flow selectively interacted with compensatory and/or guidance levels of steering control, under either unconstrained gaze or constrained gaze conditions. Optic flow speed was manipulated independent of the veridical roadedges so that use of flow would lead to predictable understeering or oversteering. Steering was found to systematically vary according to flow speed, but crucially the Flow-Induced Steering Bias (FISB) magnitude depended on which road-edge components were visible. The presence of a guidance signal increased the influence of flow, with the largest FISB in 'Far' and 'Complete' road conditions, whereas the smallest FISB was observed when only 'Near' road-edges were visible. Gaze behaviors influenced steering to some degree, but did not fully explain the interaction between flow and road-edges. Overall the experiments demonstrate that optic flow can act indirectly upon steering control by modulating the guidance signal provided by a demarcated path

    The role of gaze and road edge information during high speed locomotion.

    Get PDF
    Robust control of skilled actions requires the flexible combination of multiple sources of information. Here we examined the role of gaze during high-speed locomotor steering and in particular the role of feedback from the visible road edges. Participants were required to maintain one of three lateral positions on the road when one or both edges were degraded (either by fading or removing them). Steering became increasingly impaired as road edge information was degraded, with gaze being predominantly directed towards the required road position. When either of the road edges were removed, we observed systematic shifts in steering and gaze direction dependent upon both the required road position and the visible edge. A second experiment required fixation on the road center or beyond the road edges. The results showed that the direction of gaze led to predictable steering biases, which increased as road edge information became degraded. A new steering model demonstrates that the direction of gaze and both road edges influence steering in a manner consistent with the flexible weighted combination of near road feedback information and prospective gaze information

    The influence of visual flow and perceptual load on locomotion speed

    Get PDF
    Visual flow is used to perceive and regulate movement speed during locomotion. We assessed the extent to which variation in flow from the ground plane, arising from static visual textures, influences locomotion speed under conditions of concurrent perceptual load. In two experiments, participants walked over a 12-m projected walkway that consisted of stripes that were oriented orthogonal to the walking direction. In the critical conditions, the frequency of the stripes increased or decreased. We observed small, but consistent effects on walking speed, so that participants were walking slower when the frequency increased compared to when the frequency decreased. This basic effect suggests that participants interpreted the change in visual flow in these conditions as at least partly due to a change in their own movement speed, and counteracted such a change by speeding up or slowing down. Critically, these effects were magnified under conditions of low perceptual load and a locus of attention near the ground plane. Our findings suggest that the contribution of vision in the control of ongoing locomotion is relatively fluid and dependent on ongoing perceptual (and perhaps more generally cognitive) task demands

    Robot Guided ‘Pen Skill’ Training in Children with Motor Difficulties

    Get PDF
    Motor deficits are linked to a range of negative physical, social and academic consequences. Haptic robotic interventions, based on the principles of sensorimotor learning, have been shown previously to help children with motor problems learn new movements. We therefore examined whether the training benefits of a robotic system would generalise to a standardised test of ‘pen-skills’, assessed using objective kinematic measures [via the Clinical Kinematic Assessment Tool, CKAT]. A counterbalanced, cross-over design was used in a group of 51 children (37 male, aged 5-11 years) with manual control difficulties. Improved performance on a novel task using the robotic device could be attributed to the intervention but there was no evidence of generalisation to any of the CKAT tasks. The robotic system appears to have the potential to support motor learning, with the technology affording numerous advantages. However, the training regime may need to target particular manual skills (e.g. letter formation) in order to obtain clinically significant improvements in specific skills such as handwriting

    Numerical investigation of VOC levels in the area of petrol stations

    No full text
    In the area of petrol stations several Volatile Organic Compounds (VOCs) leak into the atmosphere due to the evaporation of liquid fuels, especially of gasoline that is predominantly composed of light hydrocarbons. The aim of the present study is to investigate the spatial distribution of various VOCs when leaked into the atmosphere in the area of a petrol station. The study is based on numerical simulations. The effect of wind speed and direction, as well as of air temperature has been studied. Gasoline components of different properties have been studied (e.g. pentane, iso-octane, o-xylene, toluene, benzene), as well as ethanol that is considered a new fuel blend component that can be found in different fractions in new gasoline blends worldwide. The area of flammable cloud near the source of the leak is investigated for various atmospheric conditions taking into account the lower and higher flammable limits of each compound. Lastly, the exposure to gasoline vapour is studied taking into consideration the recommended occupational exposure limits of various organisations

    Performance on the Detection Response Task during driving: Separating the manual and cognitive element of the secondary task

    No full text
    The Detection Response Task (DRT) is designed to measure driver distraction from secondary tasks. This driving simulator study compared drivers’ performance on the head mounted version of the DRT during dual task conditions (DRT + driving) with performance in a tertiary task setting (DRT + driving + secondary task). Three secondary tasks were used, requiring: nonvisual, visual, or visuomanual resources. The 1-back (Easy) and countback in 7s (Difficult) tasks were used as two levels of a nonvisual task. For the visual and visuomanual task, a visual search display was presented on the simulator screen, which overlapped with the back of a lead car. Response to this task was either verbal (visual) or via buttons on the steering wheel (visuomanual). Results showed DRT to be sensitive to the different difficulty levels of the nonvisual task. DRT performance did not distinguish between different perceptual demands of the visual task, but was affected by the manual load of the visuomanual task. Understanding the role of task pace in these studies is thought to be an important factor and further work using different visual tasks is also required to appreciate the value of the DRT in evaluating the distracting effects of in-vehicle HMI
    corecore