178 research outputs found
Cosmic-ray driven dynamo in galaxies
We present recent developments of global galactic-scale numerical models of
the Cosmic Ray (CR) driven dynamo, which was originally proposed by Parker
(1992). We conduct a series of direct CR+MHD numerical simulations of the
dynamics of the interstellar medium (ISM), composed of gas, magnetic fields and
CR components. We take into account CRs accelerated in randomly distributed
supernova (SN) remnants, and assume that SNe deposit small-scale, randomly
oriented, dipolar magnetic fields into the ISM. The amplification timescale of
the large-scale magnetic field resulting from the CR-driven dynamo is
comparable to the galactic rotation period. The process efficiently converts
small-scale magnetic fields of SN-remnants into galactic-scale magnetic fields.
The resulting magnetic field structure resembles the X-shaped magnetic fields
observed in edge-on galaxies.Comment: 6 pages, 4 figures, to appear in Proceedings of IAU Symp. 274,
Advances in Plasma Astrophysics, ed. A. Bonanno, E. de Gouveia dal Pino and
A. Kosoviche
Experience with the Quality Assurance of the Superconducting Electrical Circuits of the LHC Machine
The coherence between the powering reference database for the LHC and the Electrical Quality Assurance (ELQA) is guaranteed on the procedural level. However, a challenge remains the coherence between the database, the magnet test and assembly procedures, and the connection of all superconducting circuits in the LHC machine. In this paper, the methods, tooling, and procedures for the ELQA during the assembly phase of the LHC will be presented in view of the practical experience gained in the LHC tunnel. Some examples of detected polarity errors and electrical non-conformities will be presented. The parameters measured at ambient temperature, such as the dielectric insulation of circuits, will be discussed
Automatic System for the D.C. High Voltage Qualification of the Superconducting Electrical Circuits of the LHC Machine
A d.c. high voltage test system has been developed to verify automatically the insulation resistance of the powering circuits of the LHC. In the most complex case, up to 72 circuits share the same volume inside cryogenic lines. Each circuit can have an insulation fault versus any other circuit or versus ground. The system is able to connect up to 80 circuits and apply a voltage up to 2 kV D.C. The leakage current flowing through each circuit is measured within a range of 1 nA to 1.6 mA. The matrix of measurements allows characterizing the paths taken by the currents and locating weak points of the insulation between circuits. The system is composed of a D.C. voltage source and a data acquisition card. The card is able to measure with precision currents and voltages and to drive up to 5 high voltage switching modules offering 16 channels each. A LabVIEW application controls the system for an automatic and safe operation. This paper describes the hardware and software design, the testing methodology and the results obtained during the qualification of the LHC superconducting circuits
Electrical Quality Assurance of the Superconducting Circuits during LHC Machine Assembly
Based on the LHC powering reference database, all-together 1750 superconducting circuits were connected in the various cryogenic transfer lines of the LHC machine. Testing the continuity, magnet polarity, and the quality of the electrical insulation were the main tasks of the Electrical Quality Assurance (ELQA) activities during the LHC machine assembly. With the assembly of the LHC now complete, the paper reviews the work flow, resources, and the qualification results including the different types of electrical non-conformities
The Quality Control of the LHC Continuous Cryostat Interconnections
The interconnections between the Large Hadron Collider (LHC) magnets have required some 40 000 TIG welded joints and 65 000 electrical splices. At the level of single joints and splices, non-destructive techniques find limited application: quality control is based on the qualification of the process and of operators, on the recording of production parameters and on production samples. Visual inspection and process audits were the main techniques used. At the level of an extended chain of joints and splices - from a 53.5 m half-cell to a complete 2.7 km arc sector - quality control is based on vacuum leak tests, electrical tests and RF microwave reflectometry that progressively validated the work performed. Subsequent pressure tests, cryogenic circuits flushing with high pressure helium and cool-downs revealed a few unseen or new defects. This paper presents an overview of the quality control techniques used, seeking lessons applicable to similar large, complex projects
Measurement of the Luminosity in the ZEUS Experiment at HERA II
The luminosity in the ZEUS detector was measured using photons from electron
bremsstrahlung. In 2001 the HERA collider was upgraded for operation at higher
luminosity. At the same time the luminosity-measuring system of the ZEUS
experiment was modified to tackle the expected higher photon rate and
synchrotron radiation. The existing lead-scintillator calorimeter was equipped
with radiation hard scintillator tiles and shielded against synchrotron
radiation. In addition, a magnetic spectrometer was installed to measure the
luminosity independently using photons converted in the beam-pipe exit window.
The redundancy provided a reliable and robust luminosity determination with a
systematic uncertainty of 1.7%. The experimental setup, the techniques used for
luminosity determination and the estimate of the systematic uncertainty are
reported.Comment: 25 pages, 11 figure
Magnetic Field Structure of the Large Magellanic Cloud from Faraday Rotation Measures of Diffuse Polarized Emission
We present a study of the magnetic field of the Large Magellanic Cloud (LMC),
carried out using diffuse polarized synchrotron emission data at 1.4 GHz
acquired at the Parkes Radio Telescope and the Australia Telescope Compact
Array. The observed diffuse polarized emission is likely to originate above the
LMC disk on the near side of the galaxy. Consistent negative rotation measures
(RMs) derived from the diffuse emission indicate that the line-of-sight
magnetic field in the LMC's near-side halo is directed coherently away from us.
In combination with RMs of extragalactic sources that lie behind the galaxy, we
show that the LMC's large scale magnetic field is likely to be of quadrupolar
geometry, consistent with the prediction of dynamo theory. On smaller scales,
we identify two brightly polarized filaments southeast of the LMC, associated
with neutral hydrogen arms. The filaments' magnetic field potentially aligns
with the direction towards the Small Magellanic Cloud. We suggest that tidal
interactions between the Small and the Large Magellanic Clouds in the past 10^9
years is likely to have shaped the magnetic field in these filaments.Comment: 42 pages, 22 figures, 2 tables. Accepted for publication in ApJ.
Electronic version of Table 2 is available via email from the first autho
The LHC Continuous Cryostat Interconnections: The Organization of a Logistically Complex Worksite Requiring Strict Quality Standards and High Output
The interconnections of the Large Hadron Collider (LHC) continuous cryostat have been completed in fall 2007: 1695 interconnections magnet to magnet and 224 interconnections between the continuous cryostat and the cryogenic distribution line have been executed along the 27Â km of the LHC. The very tight schedule, the complexity of the interconnection sequence, the strict quality standards applied have required the creation of an ad hoc organization in order to steer and coordinate the activities on the worksite dispersed along the whole accelerator ring. The concatenation of construction and test phases carried out by CERN staff, CERN collaborating institutes and contractors have led to the necessity of a common approach and of a very effective information flow. In this paper, after having recalled the main technical challenges, we review the organizational choices that have been taken and we briefly analyze the development of the worksite in term of allocated resources and production
'Working outâ identity: distance runners and the management of disrupted identity
This article contributes fresh perspectives to the empirical literature on the sociology of the body, and of leisure and identity, by analysing the impact of long-term injury on the identities of two amateur but serious middle/long-distance runners. Employing a symbolic interactionist framework,and utilising data derived from a collaborative autoethnographic project, it explores the role
of âidentity workâ in providing continuity of identity during the liminality of long-term injury and
rehabilitation, which poses a fundamental challenge to athletic identity. Specifically, the analysis
applies Snow and Andersonâs (1995) and Perinbanayagamâs (2000) theoretical conceptualisations
in order to examine the various forms of identity work undertaken by the injured participants, along
the dimensions of materialistic, associative and vocabularic identifications. Such identity work was
found to be crucial in sustaining a credible sporting identity in the face of disruption to the running
self, and in generating momentum towards the goal of restitution to full running fitness and reengagement
with a cherished form of leisure.
KEYWORDS: identity work, symbolic interactionism, distance running, disrupted identit
- âŠ