5 research outputs found

    First -decay spectroscopy of and new -decay branches of

    Get PDF
    19 pags., 14 figs., 3 tabs.The  decay of the neutron-rich and was investigated experimentally in order to provide new insights into the nuclear structure of the tin isotopes with magic proton number above the shell. The -delayed -ray spectroscopy measurement was performed at the ISOLDE facility at CERN, where indium isotopes were selectively laser-ionized and on-line mass separated. Three -decay branches of were established, two of which were observed for the first time. Population of neutron-unbound states decaying via rays was identified in the two daughter nuclei of and , at excitation energies exceeding the neutron separation energy by 1 MeV. The -delayed one- and two-neutron emission branching ratios of were determined and compared with theoretical calculations. The -delayed one-neutron decay was observed to be dominant -decay branch of even though the Gamow-Teller resonance is located substantially above the two-neutron separation energy of . Transitions following the  decay of are reported for the first time, including rays tentatively attributed to . In total, six new levels were identified in on the basis of the coincidences observed in the and decays. A transition that might be a candidate for deexciting the missing neutron single-particle state in was observed in both  decays and its assignment is discussed. Experimental level schemes of and are compared with shell-model predictions. Using the fast timing technique, half-lives of the , and levels in were determined. From the lifetime of the state measured for the first time, an unexpectedly large transition strength was deduced, which is not reproduced by the shell-model calculations.M.P.-S. acknowledges the funding support from the Polish National Science Center under Grants No. 2019/33/N/ST2/03023 and No. 2020/36/T/ST2/00547 (Doctoral scholarship ETIUDA). J.B. acknowledges support from the Universidad Complutense de Madrid under the Predoctoral Grant No. CT27/16- CT28/16. This work was partially funded by the Polish National Science Center under Grants No. 2020/39/B/ST2/02346, No. 2015/18/E/ST2/00217, and No. 2015/18/M/ST2/00523, by the Spanish government via Projects No. FPA2017-87568-P, No. RTI2018-098868-B-I00, No. PID2019-104390GB-I00, and No. PID2019-104714GB-C21, by the U.K. Science and Technology Facilities Council (STFC), the German BMBF under Contract No. 05P18PKCIA, by the Portuguese FCT under the Projects No. CERN/FIS-PAR/0005/2017, and No. CERN/FIS-TEC/0003/2019, and by the Romanian IFA Grant CERN/ISOLDE. The research leading to these results has received funding from the European Union’s Horizon 2020 research and innovation programme under Grant Agreement No. 654002. M.Str. acknowledges the funding from the European Union’s Horizon 2020 research and innovation program under Grant Agreement No. 771036 (ERC CoG MAIDEN). J.P. acknowledges support from the Academy of Finland (Finland) with Grant No. 307685. Work at the University of York was supported under STFC Grants No. ST/L005727/1 and No. ST/P003885/1

    First beta-decay spectroscopy of In-135 and new beta-decay branches of In-134

    Get PDF
    The beta decay of the neutron-rich In-134 and In-135 was investigated experimentally in order to provide new insights into the nuclear structure of the tin isotopes with magic proton number Z = 50 above the N = 82 shell. The beta-delayed gamma-ray spectroscopy measurement was performed at the ISOLDE facility at CERN, where indium isotopes were selectively laser-ionized and on-line mass separated. Three beta-decay branches of In-134 were established, two of which were observed for the first time. Population of neutron-unbound states decaying via. rays was identified in the two daughter nuclei of In-134, Sn-134 and Sn-133, at excitation energies exceeding the neutron separation energy by 1 MeV. The beta-delayed one- and two-neutron emission branching ratios of In-134 were determined and compared with theoretical calculations. The beta-delayed one-neutron decay was observed to be dominant beta-decay branch of In-134 even though the Gamow-Teller resonance is located substantially above the two-neutron separation energy of Sn-134. Transitions following the beta decay of In-135 are reported for the first time, including. rays tentatively attributed to Sn-135. In total, six new levels were identified in Sn-134 on the basis of the beta.. coincidences observed in the In-134 and In-135 beta decays. A transition that might be a candidate for deexciting the missing neutron single-particle 13/2(+) state in Sn-133 was observed in both beta decays and its assignment is discussed. Experimental level schemes of Sn-134 and Sn-135 are compared with shell-model predictions. Using the fast timing technique, half-lives of the 2(+), 4(+), and 6(+) levels in Sn-134 were determined. From the lifetime of the 4(+) state measured for the first time, an unexpectedly large B(E2; 4(+)-> 2(+)) transition strength was deduced, which is not reproduced by the shell-model calculations.Peer reviewe

    Endomorphin-2 analogs containing modified tyrosines: Biological and theoretical investigation of the influence on conformation and pharmacological profile

    No full text
    New analogs of the endogenous opioid agonist endomorphin-2 (EM-2, H-Tyr-Pro-Phe-Phe-NH2) have been obtained by introducing modified tyrosines at the position 1 of the sequence. For all analogs, the cis/trans conformation ratio about the tyramine-Pro amide bond, lipophilicity, receptor affinities, and functional activities, have been determined. Among the novel derivatives, [Dmt(3\u2032-Cl)]1EM-2 (4) stood out for its subnanomolar \u3bc-opioid receptor affinity and potent agonist activity, superior to that of the parent peptide EM-2. Hybrid quantum mechanics/molecular mechanics docking computations supported the cis tyramine-Pro bioactive conformation, and allowed us to analyze the contribution of the substituents of the \u201cmessage\u201d tyramine to binding, highlighting the role of halogen-bonding in the higher receptor affinity of peptide 4
    corecore