235 research outputs found

    Thermospheric winds and temperatures above Mawson, Antarctica, observed with an all-sky imaging, Fabry-Perot spectrometer

    Get PDF
    A new all-sky imaging Fabry-Perot spectrometer has been installed at Mawson station (67°36' S, 62°52' E), Antarctica. This instrument is capable of recording independent spectra from many tens of locations across the sky simultaneously. Useful operation began in March 2007, with spectra recorded on a total of 186 nights. Initial analysis has focused on the large-scale daily and average behavior of winds and temperatures derived from observations of the 630.0 nm airglow line of atomic oxygen, originating from a broad layer centered around 240 km altitude, in the ionospheric F-region. <br><br> The 1993 Horizontal Wind Model (HWM93), NRLMSISE-00 atmospheric model, and the Coupled Thermosphere/Ionosphere Plasmasphere (CTIP) model were used for comparison. During the geomagnetically quiet period studied, observed winds and temperatures were generally well modelled, although temperatures were consistently higher than NRLMSISE-00 predicted, by up to 100 K. CTIP temperatures better matched our data, particularly later in the night, but predicted zonal winds which were offset from those observed by 70–180 ms<sup>−1</sup> westward. During periods of increased activity both winds and temperatures showed much greater variability over time-scales of less than an hour. For the active night presented here, a period of 45 min saw wind speeds decrease by around 180 ms<sup>−1</sup>, and temperatures increase by approximately 100 K. Active-period winds were poorly modelled by HWM93 and CTIP, although observed median temperatures were in better agreement with NRLMSISE-00 during such periods. <br><br> Average behavior was found to be generally consistent with previous studies of thermospheric winds above Mawson. The collected data set was representative of quiet geomagnetic and solar conditions. Geographic eastward winds in the afternoon/evening generally continued until around local midnight, when winds turned equatorward. Geographic meridional and zonal winds in the afternoon were approximately 50 ms<sup>−1</sup> weaker than expected from HWM93, as was the transition to equatorward flow around midnight. There was also a negligible geographic zonal component to the post-midnight wind where HWM93 predicted strong westward flow. Average temperatures between 19:00 and 04:00 local solar time were around 60 K higher than predicted by NRLMSISE-00

    First E region observations of mesoscale neutral wind interaction with auroral arcs

    Get PDF
    We report the first observations of E region neutral wind fields and their interaction with auroral arcs at mesoscale spatial resolution during geomagnetically quiet conditions at Mawson, Antarctica. This was achieved by using a scanning Doppler imager, which can observe thermospheric neutral line-of-sight winds and temperatures simultaneously over a wide field of view. In two cases, the background E region wind field was perpendicular to an auroral arc, which when it appeared caused the wind direction within ∼50 km of the arc to rotate parallel along the arc, reverting to the background flow direction when the arc disappeared. This was observed under both westward and eastward plasma convection. The wind rotations occurred within 7–16 min. In one case, as an auroral arc propagated from the horizon toward the local zenith, the background E region wind field became significantly weaker but remained unaffected where the arc had not passed through. We demonstrate through modeling that these effects cannot be explained by height changes in the emission layer. The most likely explanation seems to be the greatly enhanced ion drag associated with the increased plasma density and localized ionospheric electric field associated with auroral arcs. In all cases, the F region neutral wind appeared less affected by the auroral arc, although its presence is clear in the data

    Mesoscale observations of Joule heating near an auroral arc and ion-neutral collision frequency in the polar cap E region

    Get PDF
    We report on the first mesoscale combined ionospheric and thermospheric observations, partly in the vicinity of an auroral arc, from Svalbard in the polar cap on 2 February 2010. The EISCAT Svalbard radar employed a novel scanning mode in order to obtain F and E region ion flows over an annular region centered on the radar. Simultaneously, a colocated Scanning Doppler Imager observed the E region neutral winds and temperatures around 110 km altitude using the 557.7 nm auroral optical emission. Combining the ion and neutral data permits the E region Joule heating to be estimated with an azimuthal spatial resolution of ∼64 km at a radius of ∼163 km from the radar. The spatial distribution of Joule heating shows significant mesoscale variation. The ion-neutral collision frequency is measured in the E region by combining all the data over the entire field of view with only weak aurora present. The estimated ion-neutral collision frequency at ∼113 km altitude is in good agreement with the MSIS atmospheric model

    A comparison of overshoot modelling with observations of polar mesospheric summer echoes at radar frequencies of 56 and 224 MHz

    Get PDF
    We have compared radar observations of polar mesospheric summer echoes (PMSEs) modulated by artificial electron heating, at frequencies of 224 MHz (EISCAT VHF) and 56 MHz (MORRO). We have concentrated on 1 day of observation, lasting ∼ 3.8 h. The MORRO radar, with its much wider beam, observes one or more PMSE layers all the time while the VHF radar observes PMSEs in 69% of the time. Statistically there is a clear difference between how the MORRO and the VHF radar backscatter reacts to the heater cycling (48 s heater on and 168 s heater off). While MORRO often reacts by having its backscatter level increased when the heater is switched on, as predicted by Scales and Chen (2008), the VHF radar nearly always sees the "normal" VHF overshoot behaviour with an initial rapid reduction of backscatter. However, in some heater cycles we do see a substantial recovery of the VHF backscatter after its initial reduction to levels several times above that just before the heater was switched on. For the MORRO radar a recovery during the heater-on phase is much more common. The reaction when the heater was switched off was a clear overshoot for nearly all VHF cases but less so for MORRO. A comparison of individual curves for the backscatter values as a function of time shows, at least for this particular day, that in high layers above ∼ 85 km height, both radars see a reduction of the backscatter as the heater is switched on, with little recovery during the heater-on time. These variations are well described by present models. On the other hand, the backscatter in low layers at 81-82 km can be quite different, with modest or no reduction in backscatter as the heater is switched on, followed by a strong recovery for both radars to levels several times above that of the undisturbed PMSEs. This simultaneous, nearly identical behaviour at the two very different radar frequencies is not well described by present modelling

    Spatial sampling of the thermospheric vertical wind field at auroral latitudes

    Get PDF
    Results are presented from two nights of bistatic Doppler measurements of neutral thermospheric winds using Fabry!Perot spectrometers at Mawson and Davis stations in Antarctica. A scanning Doppler imager (SDI) at Mawson and a narrow-field Fabry-Perot spectrometer (FPS) at Davis have been used to estimate the vertical wind at three locations along the great circle joining the two stations, in addition to the vertical wind routinely observed above each station. These data were obtained from observations of the 630.0 nm airglow line of atomic oxygen, at a nominal altitude of 240 km. Low!resolution all-sky images produced by the Mawson SDI have been used to relate disturbances in the measured vertical wind field to auroral activity and divergence in the horizontal wind field. Correlated vertical wind responses were observed on a range of horizontal scales from ~150 to 480 km. In general, the behavior of the vertical wind was in agreement with earlier studies, with strong upward winds observed poleward of the optical aurora and sustained, though weak, downward winds observed early in the night. The relation between vertical wind and horizontal divergence was seen to follow the general trend predicted by Burnside et al. (1981), whereby upward vertical winds were associated with positive divergence and vice versa; however, a scale height approximately 3–4 times greater than that modeled by NRLMSISE-00 was required to best fit the data using this relation

    Elevated maternal lipoprotein (a) and neonatal renal vein thrombosis: a case report

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>Renal vein thrombosis, although rare in adults, is well recognized in neonates and is one of the most common manifestations of neonatal thromboembolic events. The etiology of renal vein thrombosis remains unidentified in the majority of cases. We report a case of renal vein thrombosis in a neonate associated with elevated maternal lipoprotein (a).</p> <p>Case presentation</p> <p>A full-term female infant, appropriate for gestational age, was born via spontaneous vaginal delivery to an 18-year-old primigravida. The infant's birth weight was 3680 g and the Apgar scores were eight and nine at 1 and 5 minutes respectively. Evaluation of the infant in the newborn nursery revealed a palpable mass in the right lumbar area. Tests revealed hematuria and a high serum creatinine level of 1.5 mg/dl. An abdominal ultrasound Doppler flow study demonstrated an enlarged right kidney, right renal vein thrombosis, and progression of the thrombosis to the inferior vena cava. There was no evidence of saggital sinus thrombosis. An extensive work-up of parents for hypercoagulable conditions was remarkable for a higher plasma lipoprotein (a) level of 73 mg/dl and an elevated fibrinogen level of 512 mg/dl in the mother. All paternal levels were normal. The plasma lipoprotein (a) level in the neonate was also normal. The neonate was treated with low molecular weight heparin (enoxaparin) at 1.5 mg/kg/day every 12 hours for 2 months, at which time a follow-up ultrasound Doppler flow study showed resolution of the thrombosis in both the renal vein and the inferior vena cava.</p> <p>Conclusion</p> <p>There have been no studies to date that have explored the effect of abnormal maternal risk factors on fetal hemostasis. A case-control study is required to investigate whether elevated levels of maternal lipoprotein (a) may be a risk factor for neonatal thrombotic processes. Although infants with this presentation are typically treated with anticoagulation, there is a lack of evidence-based guidelines. Treatment modalities vary between study and treatment centers which warrants the establishment of a national registry.</p
    corecore