10 research outputs found

    Simultaneous Synthesis of Both Rings of Chromenes via a Benzannulation/<i>o</i>-Quinone Methide Formation/Electrocyclization Cascade

    No full text
    A new route to the chromene ring system has been developed which involves the reaction of an α,β-unsaturated Fischer carbene complex of chromium with a propargyl ether bearing an alkenyl group on the propargylic carbon. This transformation involves a cascade of reactions that begins with a benzannulation reaction and is followed by the formation of an <i>o</i>-quinone methide, and finally results in the emergence of a chromene upon an electrocyclization. This reaction was extended to provide access by employing an aryl carbene complex. This constitutes the first synthesis of chromenes in which both rings of the chromene system are generated in a single step and is highlighted in the synthesis of lapachenole and vitamin E

    Simultaneous Synthesis of Both Rings of Chromenes via a Benzannulation/<i>o</i>-Quinone Methide Formation/Electrocyclization Cascade

    No full text
    A new route to the chromene ring system has been developed which involves the reaction of an α,β-unsaturated Fischer carbene complex of chromium with a propargyl ether bearing an alkenyl group on the propargylic carbon. This transformation involves a cascade of reactions that begins with a benzannulation reaction and is followed by the formation of an <i>o</i>-quinone methide, and finally results in the emergence of a chromene upon an electrocyclization. This reaction was extended to provide access by employing an aryl carbene complex. This constitutes the first synthesis of chromenes in which both rings of the chromene system are generated in a single step and is highlighted in the synthesis of lapachenole and vitamin E

    Click Chemistry-Facilitated Structural Diversification of Nitrothiazoles, Nitrofurans, and Nitropyrroles Enhances Antimicrobial Activity against Giardia lamblia

    No full text
    Giardia lamblia is an important and ubiquitous cause of diarrheal disease. The primary agents in the treatment of giardiasis are nitroheterocyclic drugs, particularly the imidazoles metronidazole and tinidazole and the thiazole nitazoxanide. Although these drugs are generally effective, treatment failures occur in up to 20% of cases, and resistance has been demonstrated in vivo and in vitro Prior work had suggested that side chain modifications of the imidazole core can lead to new effective 5-nitroimidazole drugs that can combat nitro drug resistance, but the full potential of nitroheterocycles other than imidazole to yield effective new antigiardial agents has not been explored. Here, we generated derivatives of two clinically utilized nitroheterocycles, nitrothiazole and nitrofuran, as well as a third heterocycle, nitropyrrole, which is related to nitroimidazole but has not been systematically investigated as an antimicrobial drug scaffold. Click chemistry was employed to synthesize 442 novel nitroheterocyclic compounds with extensive side chain modifications. Screening of this library against representative G. lamblia strains showed a wide spectrum of in vitro activities, with many of the compounds exhibiting superior activity relative to reference drugs and several showing &gt;100-fold increase in potency and the ability to overcome existing forms of metronidazole resistance. The majority of new compounds displayed no cytotoxicity against human cells, and several compounds were orally active against murine giardiasis in vivo These findings provide additional impetus for the systematic development of nitroheterocyclic compounds with nonimidazole cores as alternative and improved agents for the treatment of giardiasis and potentially other infectious agents

    Click chemistry-facilitated comprehensive identification of proteins adducted by antimicrobial 5-nitroimidazoles for discovery of alternative drug targets against giardiasis.

    No full text
    Giardiasis and other protozoan infections are major worldwide causes of morbidity and mortality, yet development of new antimicrobial agents with improved efficacy and ability to override increasingly common drug resistance remains a major challenge. Antimicrobial drug development typically proceeds by broad functional screens of large chemical libraries or hypothesis-driven exploration of single microbial targets, but both strategies have challenges that have limited the introduction of new antimicrobials. Here, we describe an alternative drug development strategy that identifies a sufficient but manageable number of promising targets, while reducing the risk of pursuing targets of unproven value. The strategy is based on defining and exploiting the incompletely understood adduction targets of 5-nitroimidazoles, which are proven antimicrobials against a wide range of anaerobic protozoan and bacterial pathogens. Comprehensive adductome analysis by modified click chemistry and multi-dimensional proteomics were applied to the model pathogen Giardia lamblia to identify dozens of adducted protein targets common to both 5'-nitroimidazole-sensitive and -resistant cells. The list was highly enriched for known targets in G. lamblia, including arginine deiminase, α-tubulin, carbamate kinase, and heat shock protein 90, demonstrating the utility of the approach. Importantly, over twenty potential novel drug targets were identified. Inhibitors of two representative new targets, NADP-specific glutamate dehydrogenase and peroxiredoxin, were found to have significant antigiardial activity. Furthermore, all the identified targets remained available in resistant cells, since giardicidal activity of the respective inhibitors was not impacted by resistance to 5'-nitroimidazoles. These results demonstrate that the combined use of click chemistry and proteomics has the potential to reveal alternative drug targets for overcoming antimicrobial drug resistance in protozoan parasites

    Expanded therapeutic potential in activity space of next-generation 5-nitroimidazole antimicrobials with broad structural diversity

    No full text
    Metronidazole and other 5-nitroimidazoles (5-NI) are among the most effective antimicrobials available against many important anaerobic pathogens, but evolving resistance is threatening their long-term clinical utility. The common 5-NIs were developed decades ago, yet little 5-NI drug development has since taken place, leaving the true potential of this important drug class unexplored. Here we report on a unique approach to the modular synthesis of diversified 5-NIs for broad exploration of their antimicrobial potential. Many of the more than 650 synthesized compounds, carrying structurally diverse functional groups, have vastly improved activity against a range of microbes, including the pathogenic protozoa Giardia lamblia and Trichomonas vaginalis, and the bacterial pathogens Helicobacter pylori, Clostridium difficile, and Bacteroides fragilis. Furthermore, they can overcome different forms of drug resistance, and are active and nontoxic in animal infection models. These findings provide impetus to the development of structurally diverse, next-generation 5-NI drugs as agents in the antimicrobial armamentarium, thus ensuring their future viability as primary therapeutic agents against many clinically important infections

    A global database of soil nematode abundance and functional group composition

    Get PDF
    As the most abundant animals on earth, nematodes are a dominant component of the soil community. They play critical roles in regulating biogeochemical cycles and vegetation dynamics within and across landscapes and are an indicator of soil biological activity. Here, we present a comprehensive global dataset of soil nematode abundance and functional group composition. This dataset includes 6,825 georeferenced soil samples from all continents and biomes. For geospatial mapping purposes these samples are aggregated into 1,933 unique 1-km pixels, each of which is linked to 73 global environmental covariate data layers. Altogether, this dataset can help to gain insight into the spatial distribution patterns of soil nematode abundance and community composition, and the environmental drivers shaping these patterns.Peer reviewe

    A global database of soil nematode abundance and functional group composition [Data paper]

    No full text
    Measurement(s)Abundance center dot Nematoda center dot environmental factorTechnology Type(s)Elutriative Centrifugation center dot computational modeling techniqueFactor Type(s)geographic locationSample Characteristic - OrganismNematodaSample Characteristic - Environmentsoil environment center dot climateSample Characteristic - LocationEarth (planet) Machine-accessible metadata file describing the reported data: 10.6084/m9.figshare.11925843 As the most abundant animals on earth, nematodes are a dominant component of the soil community. They play critical roles in regulating biogeochemical cycles and vegetation dynamics within and across landscapes and are an indicator of soil biological activity. Here, we present a comprehensive global dataset of soil nematode abundance and functional group composition. This dataset includes 6,825 georeferenced soil samples from all continents and biomes. For geospatial mapping purposes these samples are aggregated into 1,933 unique 1-km pixels, each of which is linked to 73 global environmental covariate data layers. Altogether, this dataset can help to gain insight into the spatial distribution patterns of soil nematode abundance and community composition, and the environmental drivers shaping these patterns

    A global database of soil nematode abundance and functional group composition

    No full text
    This study uses direct measurements of soil nematode abundance from 6,825 georeferenced locations around the world, covering all continents and all terrestrial biomes. We describe the data sources, methodology and data processing steps to transform the data into a version that can be used for, for example, geospatial modeling. To do so, the samples were aggregated to the 1-km2 pixel level, each pixel is linked to 73 global covariate layers. These include on soil physiochemical properties, and vegetation, climate, and topographic, anthropogenic, and spectral reflectance information
    corecore