128 research outputs found

    Moving Beyond Noninformative Priors: Why and How to Choose Weakly Informative Priors in Bayesian Analyses

    Get PDF
    Throughout the last two decades, Bayesian statistical methods have proliferated throughout ecology and evolution. Numerous previous references established both philosophical and computational guidelines for implementing Bayesian methods. However, protocols for incorporating prior information, the defining characteristic of Bayesian philosophy, are nearly nonexistent in the ecological literature. Here, I hope to encourage the use of weakly informative priors in ecology and evolution by providing a ‘consumer\u27s guide’ to weakly informative priors. The first section outlines three reasons why ecologists should abandon noninformative priors: 1) common flat priors are not always noninformative, 2) noninformative priors provide the same result as simpler frequentist methods, and 3) noninformative priors suffer from the same high type I and type M error rates as frequentist methods. The second section provides a guide for implementing informative priors, wherein I detail convenient ‘reference’ prior distributions for common statistical models (i.e. regression, ANOVA, hierarchical models). I then use simulations to visually demonstrate how informative priors influence posterior parameter estimates. With the guidelines provided here, I hope to encourage the use of weakly informative priors for Bayesian analyses in ecology. Ecologists can and should debate the appropriate form of prior information, but should consider weakly informative priors as the new ‘default’ prior for any Bayesian model

    Contrasting heterozygosity-fitness correlations across life in a long-lived seabird

    Get PDF
    Selection is a central force underlying evolutionary change and can vary in strength and direction, for example across time and space. The fitness consequences of individual genetic diversity have often been investigated by testing for multilocus heterozygosity-fitness correlations (HFCs), but few studies have been able to assess HFCs across life stages and in both sexes. Here, we test for HFCs using a 26-year longitudinal individual-based data set from a large population of a long-lived seabird (the common tern, Sterna hirundo), where 7,974 chicks and breeders of known age were genotyped at 15 microsatellite loci and sampled for life-history traits over the complete life cycle. Heterozygosity was not correlated with fledging or post-fledging prospecting probabilities, but was positively correlated with recruitment probability. For breeders, annual survival was not correlated with heterozygosity, but annual fledgling production was negatively correlated with heterozygosity in males and highest in intermediately heterozygous females. The contrasting HFCs among life stages and sexes indicate differential selective processes and emphasize the importance of assessing fitness consequences of traits over complete life histories

    Ökologische Fallenwirkung von einjĂ€hrigen BlĂŒhstreifen – LaufkĂ€fer als Ökozeiger

    Get PDF
    Werden BlĂŒhstreifen von NĂŒtzlingen und BestĂ€ubern als Nistplatz gebraucht, könnte ein Umbrechen zu einer Zerstörung der Nachkommen fĂŒhren. Dies wĂŒrde den BlĂŒhstreifen zu einer ökologischen Falle machen. In der vorliegenden Studie konnte die Hypothese einer ökologischen Falle fĂŒr NĂŒtzlinge und BestĂ€uber jedoch nicht bestĂ€tigt werden. Es wurden 35 verschiedene Arten LaufkĂ€fer gefangen, sechs davon stehen auf der Roten Liste

    Alpha and beta diversity of connected benthic–subsurface invertebrate communities respond to drying in dynamic river ecosystems

    Get PDF
    Drying disturbances are the primary determinant of aquatic community biodiversity in dynamic river ecosystems. Research exploring how communities respond to disturbance has focused on benthic invertebrates in surface sediments, inadequately representing a connected community that extends into the subsurface. We compared subsurface and benthic invertebrate responses to drying, to identify common and context‐dependent spatial patterns. We characterized community composition, alpha diversity and beta diversity across a gradient of drying duration. Subsurface communities responded to drying, but these responses were typically less pronounced than those of benthic communities. Despite compositional changes and in contrast to reductions in benthic alpha diversity, the alpha diversity of subsurface communities remained stable except at long drying durations. Some primarily benthic taxa were among those whose subsurface frequency and abundance responded positively to drying. Collectively, changing composition, stable richness and taxon‐specific increases in occurrence provide evidence that subsurface sediments can support persistence of invertebrate communities during drying disturbances. Beta‐diversity patterns varied and no consistent patterns distinguished the total diversity, turnover or nestedness of subsurface compared to benthic communities. In response to increasing drying duration, beta diversity increased or remained stable for benthic communities, but remained stable or decreased for subsurface communities, likely reflecting contrasts in the influence of mass effects, priority effects and environmental filtering. Dissimilarity between subsurface and benthic communities remained stable or increased with drying duration, suggesting that subsurface communities maintain distinct biodiversity value while also supporting temporary influxes of benthic taxa during drying events. As temporary rivers increase in extent due to global change, we highlight that recognizing the connected communities that extend into the subsurface sediments can enable holistic understanding of ecological responses to drying, the key determinant of biodiversity in these dynamic ecosystems

    You eat what you are : personality-dependent filial cannibalism in a fish with paternal care

    Get PDF
    Many animal parents invest heavily to ensure offspring survival, yet some eventually consume some or all of their very own young. This so-called filial cannibalism is known from a wide range of taxa, but its adaptive benefit remains largely unclear. The extent to which parents cannibalize their broods varies substantially not only between species, but also between individuals, indicating that intrinsic behavioral differences, or animal personalities, might constitute a relevant proximate trigger for filial cannibalism. Using a marine fish with extensive paternal care, the common goby (Pomatoschistus microps), we investigated the influence of animal personality on filial cannibalism by assessing (1) behavioral consistency across a breeding and a nonbreeding context; (2) correlations between different breeding (egg fanning; filial cannibalism) and nonbreeding (activity) behaviors, and, in a separate experiment; (3) whether previously established personality scores affect filial cannibalism levels. We found consistent individual differences in activity across contexts. Partial filial cannibalism was independent of egg fanning but correlated strongly with activity, where active males cannibalized more eggs than less active males. This pattern was strong initially but vanished as the breeding season progressed. The incidence of whole clutch filial cannibalism increased with activity and clutch size. Our findings indicate that filial cannibalism cannot generally be adjusted independently of male personality and is thus phenotypically less plastic than typically assumed. The present work stresses the multidimensional interaction between animal personality, individual plasticity and the environment in shaping filial cannibalism.Peer reviewe

    Carcass persistence and detectability : reducing the uncertainty surrounding wildlife-vehicle collision surveys

    Get PDF
    Carcass persistence time and detectability are two main sources of uncertainty on roadkill surveys. In this study, we evaluate the influence of these uncertainties on roadkill surveys and estimates. To estimate carcass persistence time, three observers (including the driver) surveyed 114km by car on a monthly basis for two years, searching for wildlife-vehicle collisions (WVC). Each survey consisted of five consecutive days. To estimate carcass detectability, we randomly selected stretches of 500m to be also surveyed on foot by two other observers (total 292 walked stretches, 146 km walked). We expected that body size of the carcass, road type, presence of scavengers and weather conditions to be the main drivers influencing the carcass persistence times, but their relative importance was unknown. We also expected detectability to be highly dependent on body size. Overall, we recorded low median persistence times (one day) and low detectability (<10%) for all vertebrates. The results indicate that body size and landscape cover (as a surrogate of scavengers' presence) are the major drivers of carcass persistence. Detectability was lower for animals with body mass less than 100g when compared to carcass with higher body mass. We estimated that our recorded mortality rates underestimated actual values of mortality by 2±10 fold. Although persistence times were similar to previous studies, the detectability rates here described are very different from previous studies. The results suggest that detectability is the main source of bias across WVC studies. Therefore, more than persistence times, studies should carefully account for differing detectability when comparing WVC studies

    Drivers of plant diversity in Bulgarian dry grasslands vary across spatial scales and functional-taxonomic groups

    Get PDF
    Questions: Studying dry grasslands in a previously unexplored region, we asked: (a) which environmental factors drive the diversity patterns in vegetation; (b) are taxonomic groups (vascular plants, bryophytes, lichens) and functional vascular plant groups differently affected; and (c) how is fine-grain beta diversity affected by environmental drivers? Location: Northwestern and Central Bulgaria. Methods: We sampled environmental data and vascular plant, terricolous bryophyte and lichen species in 97 10-m2 plots and 15 nested-plot series with seven grain sizes (0.0001–100 m2) of ten grassland sites within the two regions. We used species richness as measure of alpha-diversity and the z-value of the power-law species–area relationship as measure of beta-diversity. We analysed effects of landscape, topographic, soil and land-use variables on the species richness of the different taxonomic and functional groups. We applied generalised linear models (GLMs) or, in the presence of spatial autocorrelation, generalised linear mixed-effect models (GLMMs) in a multi-model inference framework. Results: The main factors affecting total and vascular plant species richness in 10-m2 plots were soil pH (unimodal) and inclination (negative). Species richness of bryophytes was positively affected by rock cover, sand proportion and negatively by inclination. Inclination and litter cover were also negative predictors of lichen species richness. Elevation negatively affected phanerophyte and therophyte richness, but positively that of cryptophytes. A major part of unexplained variance in species richness was associated with the grassland site. The z-values for total richness showed a positive relationship with elevation and inclination. Conclusions: Environmental factors shaping richness patterns strongly differed among taxonomic groups, functional vascular plant groups and spatial scales. The disparities between our and previous findings suggest that many drivers of biodiversity cannot be generalised but rather depend on the regional context. The large unexplained variance at the site level calls for considering more site-related factors such as land-use history

    The limits of modifying migration speed to adjust to climate change

    Get PDF
    Predicting the range of variation over which organisms can adjust to environmental change is a major challenge in ecology(1,2). This is exemplified in migratory birds which experience changes in different habitats throughout the annual cycle(3). Earlier studies showed European population trends declining strongest in migrant species with least adjustment in spring arrival time(4,5). Thus, the increasing mismatches with other trophic levels in seasonal breeding areas(6,7) probably contribute to their large-scale decline. Here we quantify the potential range of adjusting spring arrival dates through modifying migration speeds by reviewing 49 tracking studies. Among individual variation in migration speed was mainly determined by the relatively short stop-over duration. Assuming this population response reflects individual phenotypic plasticity, we calculated the potential for phenotypic plasticity to speed-up migration by reducing stop-over duration. Even a 50% reduction-would lead to a mere two-day advance in arrival, considering adjustments on the final 2,000 km of the spring journey. Hence, in contrast to previous studies(8-10), flexibility in the major determinant of migration duration seems insufficient to adjust to ongoing climate change, and is unlikely to explain some of the observed arrival advancements in long-distance migrants
    • 

    corecore