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1  | INTRODUC TION

Selection is a central force underlying evolutionary change, and a 
dynamic process that can vary in strength and direction, for exam‐
ple across time and space (Endler, 1986). When males and females 
achieve reproductive success using different (behavioural and/or 
physiological) tactics, selection can also systematically differ be‐
tween the sexes, leading to sexual conflict and/or sex‐specific trait 
expression (Cox & Calsbeek, 2009). Moreover, selection can vary 
across life stages when (a) trait expression is affected by viabil‐
ity selection or ontogenetic processes (Hamel et al., 2016; Zhang, 
Vedder, Becker, & Bouwhuis, 2015a, 2015b), (b) early‐ and late‐life 
performance are involved in a trade‐off (Williams, 1957) and/or (c) 
there are age‐specific causal agents of selection (Ditchkoff, Welch, 
Lochmiller, Masters, & Starry, 2001). Sex‐ and age‐specific fitness 

consequences of trait expression therefore are best studied in con‐
cert, across the entire lifespan and across multiple years if we are to 
understand the overall fitness effect of a trait.

Individual genetic diversity is one trait for which investigation 
of fitness consequences remains a central aim in evolutionary bi‐
ology (Charlesworth & Charlesworth, 1999; Ellegren & Sheldon, 
2008). For this purpose, individual genetic diversity is often mea‐
sured as multilocus heterozygosity, then correlated to fitness prox‐
ies (heterozygosity‐fitness correlations, HFCs; Chapman, Nakagawa, 
Coltman, Slate, & Sheldon, 2009; Coltman & Slate, 2003; Hansson 
& Westerberg, 2002; Miller & Coltman, 2014). Using markers that 
are presumed neutral (typically microsatellites), HFCs may arise 
through two mechanisms (Hansson & Westerberg, 2002). First, the 
measured heterozygosity may provide a good estimate of the ge‐
nome‐wide heterozygosity, which itself represents the individual 
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Abstract
Selection is a central force underlying evolutionary change and can vary in strength 
and direction, for example across time and space. The fitness consequences of indi‐
vidual genetic diversity have often been investigated by testing for multilocus hete‐
rozygosity‐fitness correlations (HFCs), but few studies have been able to assess HFCs 
across life stages and in both sexes. Here, we test for HFCs using a 26‐year longitu‐
dinal individual‐based data set from a large population of a long‐lived seabird (the 
common tern, Sterna hirundo), where 7,974 chicks and breeders of known age were 
genotyped at 15 microsatellite loci and sampled for life‐history traits over the com‐
plete life cycle. Heterozygosity was not correlated with fledging or post‐fledging 
prospecting probabilities, but was positively correlated with recruitment probability. 
For breeders, annual survival was not correlated with heterozygosity, but annual 
fledgling production was negatively correlated with heterozygosity in males and 
highest in intermediately heterozygous females. The contrasting HFCs among life 
stages and sexes indicate differential selective processes and emphasize the impor‐
tance of assessing fitness consequences of traits over complete life histories.
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level of inbreeding and predicts fitness in cases of in‐ or outbreed‐
ing depression (“general effect hypothesis,” Hansson & Westerberg, 
2002). Second, HFCs may arise from linkage disequilibrium between 
a neutral marker and a functional locus if that functional locus is 
related to fitness (“local effect hypothesis,” David, 1998). Although 
the capacity of microsatellite loci to reflect individual inbreeding has 
been questioned (Balloux, Amos, & Coulson, 2004; Nietlisbach et 
al., 2017; Townsend & Jamieson, 2013), quantification of the rela‐
tive importance of local versus general effects is facilitated by using 
the appropriate statistical tools and workflow (David, Pujol, Viard, 
Castella, & Goudet, 2007; Stoffel et al., 2016; Szulkin, Bierne, & 
David, 2010).

Heterozygosity‐fitness correlations have been extensively stud‐
ied for over three decades (David, 1998; Szulkin et al., 2010) and 
reported across taxa (Chapman et al., 2009) and fitness proxies 
(e.g., survival: Kuepper et al., 2010; reproductive success: Velando, 
Barros, & Moran, 2015; competitive ability: Valimaki, Hinten, & 
Hanski, 2007; secondary sexual trait expression: Von Hardenberg et 
al., 2007; parasite resistance: Shaner, Chen, Lin, Kolbe, & Lin, 2013; 
immuno‐competence: Fossoy, Johnsen, & Lifjeld, 2009). The results, 
however, are equivocal, with reports of positive, negative and non‐
significant HFCs (Canal, Serrano, & Potti, 2014; Escobar, Nicot, & 
David, 2008; Grueber, Laws, Nakagawa, & Jamieson, 2010; Marshall 
& Spalton, 2000; Monceau, Wattier, Dechaume‐Moncharmont, 
Dubreuil, & Cezilly, 2013; Neff, 2004; Olano‐Marin, Mueller, & 
Kempenaers, 2011). HFCs which differ in sign both between and 
within studies may reflect quadratic associations between hetero‐
zygosity and overall fitness and thus an optimal level of heterozy‐
gosity for which fitness is maximal (Bateson, 1978; Bichet et al., 
2014; Edmands, 2007; Ferrer, García‐Navas, Sanz, & Ortego, 2014; 
Puurtinen, 2011). Moreover, inconsistency between HFCs could be 
explained by the fitness proxy used (Chapman et al., 2009; Coltman 
& Slate, 2003) or by variation in the environmental dependence of ef‐
fects of heterozygosity on fitness (Armbruster & Reed, 2005; Szulkin 
et al., 2010) if studies do not span many years or a sufficiently large 
range of environmental conditions. Finally, HFCs could remain unde‐
tected when they are masked because unfavourable environmental 
conditions exert a stronger selection than heterozygosity (Annavi et 
al., 2014; Arct et al., 2017; Harrison et al., 2011), especially because 
HFCs are usually small (Chapman et al., 2009).

Sex‐specific HFCs have often been reported (Arct et al., 2017; 
Shaner et al., 2013) and have been suggested to result from sex‐
specific parental investment (Charpentier et al., 2006) or differen‐
tial life‐history strategies in general (Ebel & Phillips, 2016; Shaner 
et al., 2013). For example, in the European shag (Phalacrocorax 
aristotelis), a positive correlation between heterozygosity, repro‐
ductive performance and survival was only detected in females 
(Velando et al., 2015). Conversely, a negative HFC with sur‐
vival was observed in male, but not female, black‐throated tits 
(Aegithalos concinnus) (Li, Wang, Lv, Wang, & Zhang, 2016). Studies 
comparing HFCs across life stages are rarer, but those that have 
been conducted have reported the direction and strength of HFCs 
to depend on the age of the individuals studied (Cohas, Bonenfant, 

Kempenaers, & Allainé, 2009; Von Hardenberg et al., 2007; Keller, 
Reid, & Arcese, 2008; Monceau et al., 2013). In alpine marmots 
(Marmota marmota), for example, there was a positive correlation 
between heterozygosity and survival in juveniles, but not in year‐
lings, 2‐years‐olds or adults, which may be explained by the se‐
lective disappearance of low‐heterozygous individuals (Cohas et 
al., 2009).

This diversity in findings suggests that studies of a single sex or 
life‐history stage, or using only a single fitness proxy, could obscure 
our view by over‐, under‐ or misestimating HFCs. Long‐term studies 
across the lifespan of known‐age individuals of both sexes are there‐
fore crucial (Canal et al., 2014; Grueber et al., 2010; Von Hardenberg 
et al., 2007; Szulkin, Garant, McCleery, & Sheldon, 2007), and here, 
we investigate HFCs using 26 years of longitudinal individual‐based 
data from a large population of a long‐lived seabird, the common 
tern (Sterna hirundo). A total of 7,974 individuals were genotyped at 
15 microsatellite loci to assess multilocus heterozygosity, a sample 
size which far exceeds the range (7–1,055) previously reported in 
a meta‐analysis conducted by Chapman et al. (2009). For the 7,963 
chicks included in this sample, we monitored the processes of fledg‐
ing, local prospecting and local recruitment; for the 762 breeders, 
annual reproductive performance and survival. We evaluate HFCs 
across all life stages and assess the relative contribution of local ver‐
sus general effects.

2  | MATERIAL AND METHODS

2.1 | Study population

Our data come from a long‐term individual‐based study of common 
terns from a mono‐specific breeding colony located in a lake (the 
“Banter See”) in Wilhelmshaven, on the German North Sea coast 
(53°36′N, 08°06′E). At this colony, chick ringing started in 1984, 
while large‐scale individual‐based monitoring started in 1992, when 
101 breeders and all fledglings were individually marked with sub‐
cutaneous transponders (model ID 100; TROVAN, Germany; Becker 
& Wendeln, 1997). Since then, all local fledglings have been marked 
with such a transponder each year (Becker, Wendeln, & Gonzalez‐
Solis, 2001).

The colony site consists of six concrete islands (10.7 × 4.6 m 
each) surrounded by 60 cm high walls, which protect against flood‐
ing and prevent chicks from leaving their natal islands before fledg‐
ing. The walls support 44 platforms for the terns to land on and rest. 
Each platform is equipped with an antenna which reads transponder 
codes at a distance of ≤11 cm every 5–10 s and therefore automat‐
ically records the presence of transponder‐marked individuals. All 
transponder‐marked breeders are additionally identified by placing 
an antenna around each clutch for at least 24 hr during incubation, 
which is shared between partners. Because birds have a high site 
fidelity and detection probability after recruiting, our long‐term sur‐
vey enables the systematic and remote documentation of individual 
life histories (Rebke, Coulson, Becker, & Vaupel, 2010; Zhang, Rebke, 
Becker, & Bouwhuis, 2015).
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The sex of locally recruited breeders has been determined by 
standard molecular methods since 1998 (Becker & Wink, 2003) and 
was determined by behavioural observations after recruitment be‐
fore that.

2.2 | Heterozygosity

Multilocus heterozygosity of 7,972 individuals was determined using 
15 microsatellite markers (Janowski, Groß, Sauer‐Gürth, Tietze, & 
Wink, 2016). Detailed information regarding the sampling, geno‐
typing and microsatellite characteristics is presented in Supporting 
Information Appendix S1, but, in brief, DNA was obtained from 
feathers and tissue samples of 7,943 chicks and from blood of 29 
adult breeders. For chicks (n = 7,943, see Supporting Information 
Table S1 in Appendix S1), DNA was obtained from body feathers 
plucked just prior to fledging (n = 3,605) or from tissue samples 
collected from chicks found freshly dead (n = 4,338). Moreover, 29 
samples were collected from local breeders using a larval instar of 
the blood‐sucking bug Dipetalogaster maximus (Heteroptera) placed 
in a hollow artificial egg temporarily added to the nests of focal 
birds during incubation. Eighteen of the 29 birds sampled as breed‐
ers were included in the chick data because their natal nest num‐
ber, hatching order and number of siblings were known (see below). 
This way we obtained a total of 7,972 individual samples, compris‐
ing 7,961 locally hatched chick samples, covering the period 1998–
2013, and 762 locally hatched breeder samples covering the period 
1992–2016. The average number of loci genotyped per individual 
was 14.21 (± 0.02 SE).

Standardized observed heterozygosity (Hsobs) (Coltman, 
Pilkington, Smith, & Pemberton, 1999) was calculated using the r 
package genhet (Coulon, 2010) and corresponds to the proportion 
of heterozygous loci (i.e., the number of heterozygous loci divided 
by the number of typed loci) divided by the average of the observed 
heterozygosity of all typed loci.

2.3 | Monitoring reproduction

Common terns are highly socially and genetically monogamous 
(Gonzalez‐Solis, Sokolov, & Becker, 2001; Griggio, Matessi, & Marin, 
2004) migratory seabirds that arrive at the colony site in early spring 
(Becker & Ludwigs, 2004). At the Banter See, 38% of fledglings are 
registered in later years as adults prospecting the colony and of those 
“prospectors” 65% eventually recruit to breed (Vedder & Bouwhuis, 
2018). Once birds have established themselves as breeders, their 
annual survival and return rate are exceptionally high (90%; Ezard, 
Becker, & Coulson, 2006; Szostek & Becker, 2012). Since 1992, the 
number of breeding pairs ranged between 90 and 715.

Each breeding season, all nests are checked three times a week 
to record laying date, clutch size, brood size and fledging success. 
Newly hatched chicks are ringed at 0–2 days old and marked with 
transponders and weighed shortly before fledging. All chicks are 
thus reliably assigned to their parents, their nest of hatching and a 
hatching order (see also Vedder, Zhang, & Bouwhuis, 2017).

Clutch size varies between one and three eggs, which are laid 
and hatch with 1‐ to 2‐day intervals (Becker & Ludwigs, 2004). 
Common terns rear one to three chicks per successful breeding 
attempt. While failed clutches may be replaced (Becker & Zhang, 
2011; Wendeln, Becker, & Gonzalez‐Solis, 2000), second clutches 
are extremely rare (Becker & Ludwigs, 2004; Moore & Morris, 
2005).

2.4 | Life stages

2.4.1 | Hatching to fledging

Chick status (alive/dead) is recorded at each nest check. Most chicks 
that do not fledge are found dead, but missing chicks that are not 
yet at a stage ready to fledge are assumed to have died too. Chick 
disappearance results mostly from accidents caused by intraspecific 
aggression, with chicks ending up in the water and drowning, while 
other sources of “disappearance mortality,” such as predation, are 
rare (Becker, 2010). Chicks that survive to at least 18 days of age, 
and are not found dead later, are assumed to have fledged (Becker 
& Wink, 2003).

Between 1998 and 2013, 12,048 chicks (from 5,373 broods) 
hatched in our colony, of which 7,961 (66.1%) were genotyped 
(Supporting Information Appendix S1). Among these 7,961 chicks 
(from 3,934 broods), 3,623 fledged (45.5%), while 4,338 died (54.5%) 
(Supporting Information Appendix S1). Dead chicks were sampled 
regardless of their age of mortality. Among the 4,087 (33.9%) of the 
chicks that were excluded from our analyses, 954 fledged (23.3%) 
and 3,133 died (76.7%) (Supporting Information Appendix S1). This 
bias towards unsuccessful chicks among excluded chicks is caused 
by the fact that we, by definition, could not sample missing chicks. 
The causes of chick disappearance are, however, unlikely to be re‐
lated to chick heterozygosity. 2,972 (55.3%) of the 5,373 broods had 
all their chicks genotyped, while 962 broods (17.9%) had at least one 
non‐genotyped chick and 1,439 broods (26.8%) had no chicks geno‐
typed (Supporting Information Appendix S1).

A chick's hatching order determines its competitive rank within 
a brood. Later‐hatched chicks receive less food, grow more slowly, 
have a lower fledging mass (Becker & Wink, 2003), have a lower 
fledging probability and die at a younger age (Vedder et al., 2017) 
than their earlier‐hatched siblings. In addition, fledging success is 
known to be affected by brood size, such that a first chick's fledging 
probability is higher in broods with one or two siblings than when it 
is alone (Vedder et al., 2017; Vedder, Zhang, Dänhardt, & Bouwhuis, 
in revision). To correct for these two aspects of a chick's natal en‐
vironment, that affect fledging probability, but not later life stages 
(Vedder et al., in revision), we constructed a six‐level categorical vari‐
able of all possible combinations of brood size and hatching order 
(1.1, 2.1, 2.2, 3.1, 3.2, 3.3), hereafter referred to as BSHO categories. 
Finally, because fledging success is known to be higher in broods 
produced earlier in the season (Dobson, Becker, Arnaud, Bouwhuis, 
& Charmantier, 2017), we used the Julian date of laying of the first 
egg of each clutch to describe a chick's natal environment as well.



674  |     BICHET et al.

Fledging probability was assessed as the status “fledged” or 
“dead” for 7,961 chicks of known heterozygosity, BSHO and laying 
date that hatched between 1998 and 2013 (Table 1).

2.4.2 | Fledging to prospecting

Fledglings were considered successful prospectors when they returned 
to the colony within 5 years of fledging (independent of whether they 
bred or not). Each fledgling was attributed a 0 when it never returned 
after fledging or a 1 when it returned at least once. We assessed local 
prospecting for 3,607 fledglings of known sex and fledging mass be‐
tween 1998 and 2013 (Table 1), using presence data up to 2018, such 
that all prospecting could be incorporated, since age at first prospect‐
ing averages 2.3 (±1.0 SD) years (Vedder & Bouwhuis, 2018).

2.4.3 | Prospecting to recruitment

Local recruitment probability was assessed using information on 
whether or not local prospectors ever bred at the colony. Each pros‐
pector was attributed a single value: we considered a prospector as 
not locally recruited if it was not detected as a breeder within 5 years 
of fledging, because 92% of adults first attempt reproduction within 
5 years (Zhang, Rebke, et al., 2015) and age at recruitment averages 
3.8 (±1.3 SD) years (Vedder & Bouwhuis, 2018), in which case it was 
attributed a 0. Birds that bred within 5 years of fledging were at‐
tributed a 1. Using data up to 2018, we assessed recruitment for 
the 1,388 prospectors of known fledging mass, sex and age at first 
prospecting, which fledged between 1998 and 2013 (Table 1).

2.4.4 | Breeding

Between 1992 and 2016, 762 local recruits (426 males, 336 females) 
of known age at first reproduction (AFR), age, sex and heterozygo‐
sity (Table 1) were observed in 3,353 bird‐year combinations.

Annual local survival of these breeders was determined by check‐
ing whether an individual was registered by the antenna system during 
the breeding seasons between 1992 and 2018. Death was assumed 
if an individual was not registered for at least two consecutive years. 
The reliability of this assumption is high, since 97% of breeders do 
not skip observation for more than two consecutive years (Bouwhuis, 
Vedder, & Becker, 2015; Zhang, Vedder, Becker, & Bouwhuis, 2015b).

Annual local breeding probability was assessed as whether or not 
a bird was observed incubating a clutch in a given year. A non‐breed‐
ing status included years of observed skipped breeding (registered 
but not breeding, N = 183 bird‐years) as well as intermittent years of 
no observation (N = 88 bird‐years).

Annual local reproductive success was assessed as the total num‐
ber of fledglings produced in a given year, regardless of whether 
these fledglings originated from first or replacement clutches. 
In total, the 762 recruited birds reproduced in 3,082 bird‐years, 
of which the resulting number of fledglings was known for 3,079 
breeding attempts.

2.4.5 | Covariates

Survival of breeders was previously found to linearly decrease with 
age and to marginally differ between the sexes (Zhang, Rebke, et al., 

TA B L E  1   Sample size, sampling period and average observed heterozygosity (Hsobs) across the different life stages of 7,972 common 
terns. Observed effects of Hsobs are reported in the boxes

Hatchlings Fledglings Prospectors Breeders

Years 1998-2013 1998-2013 1998-2013 1992-2016

N individuals 7961 3607 1388 762 (426 males, 336 females)

N broods 3934 2578 1196 -

Average Hsobs
(±SE) 0.9995 (±0.002) 0.9991 (±0.003) 0.9991 (±0.005) 1.0071 (±0.006)

Males: 1.0052 (±0.008)
Females: 1.0095 (±0.010)

Fledging 
probability

Prospecting 
probability

Recruitment 
probability

Annual survival 
probability

no Hsobs 
effect

no Hsobs
effect

Positive Hsobs
effect

quadratic Hsobs effect after 
first breeding, no Hsobs

effect thereafter
Annual breeding 

probability

no Hsobs effect

Annual reproductive 
success

Males: negative Hsobs effect

Females: quadratic Hsobs
effect
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2015), which is why these variables were added to the annual local 
survival model. In addition, breeding probability is known to vary 
with age, while fledgling production varies with age and AFR (Rebke 
et al., 2010; Zhang, Rebke, et al., 2015; Zhang, Vedder, Becker, & 
Bouwhuis, 2015a), which were thus added as covariates to the mod‐
els assessing reproductive performance. Following Zhang, Rebke, 
et al. (2015), AFR was categorized to occur at either age 2, 3, 4 or 
5+. For our 762 local recruits, AFR averaged 3.49 (±0.01) years and 
was independent of Hsobs (β = −0.004 ± 0.02, N = 761, Z = −0.20, 
p = 0.84), confirming that both variables could be added to the model 
simultaneously.

Annual reproductive success is known to vary with arrival date 
(Dobson et al., 2017). Arrival date could, however, not be included as 
a covariate to the annual local reproductive success model, because 
it is strongly correlated with age in both sexes (males: t = −28.74, 
df = 1,530, R = −0.59, p < 0.001; females: t = −27.48, df = 1,394, 
R = −0.59, p < 0.001) (also see Zhang, Vedder, Becker, & Bouwhuis, 
2015a). Arrival date was, however, not correlated with Hsobs (males: 
β = −0.62 ± 0.71, N = 424, t = −0.87, p‐value = 0.39; females: 
β = −0.95 ± 0.87, N = 334, t = −1.09, p‐value = 0.28), making it un‐
likely that including arrival date would change our results.

Because naïve birds (which reproduce for the first time) and 
experienced birds (which reproduced at least once) differ in re‐
productive performance (Limmer & Becker, 2010), we added a 
binomial variable, “first reproduction (yes or no)” to our models 
of both annual local survival and breeding success. Moreover, 
because performance measures may be density‐dependent 
(Szostek, Becker, Meyer, Sudmann, & Zintl, 2014), we added the 
annual number of breeding pairs as a covariate to all our breeders’ 
models.

2.5 | Statistical analyses

2.5.1 | Fledging probability

To investigate whether the heterozygosity of hatchlings predicted 
their fledging probability, we used the fledging success (dead or 
fledged) of all genotyped hatchlings (as a dependent variable and 
heterozygosity, Hsobs as both a linear and a quadratic explanatory 
variable in a generalized linear mixed model (GLMM) with a “logit” 
link function and a variance given by a binomial distribution. BSHO 
was added as categorical variable, laying date of the first egg in of 
the clutch as a continuous variable. In addition to additive effects, 
we considered first‐order interactions with Hsobs. To account for 
shared family and annual environmental variation between chicks, 
we included year and nest identity (nested within year) as random 
effects.

2.5.2 | Local prospecting and recruitment 
probabilities

To investigate whether the heterozygosity of fledglings and prospec‐
tors predicted their local prospecting and recruitment probability, 

respectively, we used the fate of the fledglings (prospecting locally 
or not) and prospectors (locally recruited as breeders or not) as de‐
pendent variables and the fledgling or prospector Hsobs (linear and 
squared) as explanatory variables in two GLMMs with a “logit” link 
function and a variance given by a binomial distribution. Fledging 
mass was added as a continuous variable, sex as a two‐level fac‐
tor, because natal philopatry is known to be higher for males than 
females (Becker, Ezard, Ludwigs, Sauer‐Gürth & Wink, 2008). For 
recruitment probability, we also added the annual number of breed‐
ing pairs and age at first prospecting as covariates. In addition to 
additive effects, we considered first‐order interactions with Hsobs. 
To account for shared family and annual environmental variation 
between chicks, we included year and nest identity (nested within 
year) as random effects. Fledging mass and age at first prospecting 
did not correlate with Hsobs (fledging mass: β = 0.05 ± 0.9, N = 3,607, 
t = 0.05, p‐value = 0.96; age at first prospecting: β = −0.04 ± 0.10, 
N = 1,388, Z = −0.36, p‐value = 0.72), such that correcting for these 
variables cannot mask effects of Hsobs on prospecting or recruitment 
probability.

2.5.3 | Annual local survival and breeding 
probability

To investigate whether heterozygosity predicted the local annual 
survival and breeding probability of recruits, we used their local an‐
nual survival or breeding status as a dependent variable and Hsobs 
(linear and squared) as an explanatory variable in two GLMMs with 
a “logit” link function and a variance given by a binomial distribution. 
Age (linear and squared) and sex were entered as covariates (Zhang, 
Rebke, et al., 2015). We also accounted for whether a reproductive 
event was the first by adding a binomial variable “first reproduction 
(yes or no)” to our annual local survival model. We added the annual 
colony density as a covariate to both the annual survival and breed‐
ing probability models. In the GLMM for local annual breeding prob‐
ability, AFR was added as an additional categorical variable. Additive 
effects of all these variables, as well as the first‐order interactions 
with Hsobs (linear and squared), were considered. Breeder identity 
and year were added as random effects to avoid pseudo‐replication 
and account for environmental variation, respectively.

2.5.4 | Annual local reproductive success

A final model was run to investigate whether heterozygosity was 
related to reproductive success, assessed as the annual number 
of fledglings produced. Because male and female reproductive 
success are not independent, to avoid pseudo‐replication and to 
maximize sample size for each analysis, we ran separate models for 
males and females (Bouwhuis et al., 2015). The number of fledg‐
lings was entered as a dependent variable and the adult breeder 
Hsobs (linear and squared) as an explanatory variable in a GLMM 
with a “log” link function and a variance given by a Poisson dis‐
tribution (appropriate for count data). Age (linear and squared) 
and AFR (categorical) were entered as additional explanatory 
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variables (Zhang, Rebke, et al., 2015). As in previous models, the 
variables “first reproduction (yes/no)” and annual colony density 
were added as well and additive effects of all variables, as well as 
the first‐order interactions with Hsobs (linear and squared), were 
considered, while breeder identity and year were added as random 
effects. To investigate at which reproductive stage the observed 
effect of heterozygosity originated, we repeated the minimal 
adequate model for annual fledgling production for two under‐
lying traits: brood size (i.e., the number of chicks that hatched) 
and clutch size (i.e., the number of eggs laid) (also see Bouwhuis, 
Sheldon, Verhulst, & Charmantier, 2009).

To ensure that any effects of Hsobs on reproductive success were 
not driven by effects in a few specific years only, we repeated the 
minimal adequate models for male and female fledgling production 
in a year‐by‐year analysis. These models were run for 2003–2016, 
with the exception of 2005, as the sample sizes prior to 2003 were 
very small (N ≤ 8) and because in 2005 the fledging success was 
very low (only four chicks fledged in the used data) due to intense 
owl predation. Details about these analyses are given in Supporting 
Information Appendix S2.

All models were run with r 3.4.2 (R Core Team, 2014) using the 
function “glmer” in the package “lme4” (Bates, Maechler, Bolker, & 
Walker, 2015). All continuous variables were standardized (by sub‐
tracting the mean of the variable from each value and dividing it by 
the squared variance of the variable). All full models were tested for 
overdispersion using the function “dispersion_glmer” implemented 
in the package “blmeco” (Korner‐Nievergelt et al., 2015), and all ra‐
tios were below the recommended threshold of 1.40. Non‐signifi‐
cant interactions and quadratic effects were removed following a 
backwards elimination procedure with the level of significance set to 
α = 0.05. We, however, also used an information theoretic approach 
to select sets of plausible models and to estimate their relative im‐
portance using the Akaike information criterion corrected for small 
sample sizes (AICc) and the ΔAICc to infer support for models in the 
candidate set (Burnham & Anderson, 2002; Burnham, Anderson, & 
Huyvaert, 2011). The details of this method and the associated re‐
sults, which are very similar to those obtained with the backwards 
elimination procedure, are presented in Supporting Information 
Appendix S3. Parameter estimates are given as mean ± SE.

2.5.5 | Local versus general effect

The mean inbreeding coefficient in our population (±SD) was cal‐
culated using our microsatellites and the function “inbreeding” 
implemented in the r package “adegenet” (Jombart, 2008). The 
heterozygosity correlation across loci (i.e., identity disequilibrium) 
was evaluated using the g2 statistic (David et al., 2007), which 
measures the excess of double heterozygous at two loci relative 
to the expectation of random association (i.e., covariance in hete‐
rozygosity) standardized by the average heterozygosity (Szulkin et 
al., 2010). Identity disequilibrium is considered as the main cause 
of HFCs (Szulkin et al., 2010), such that a g2 significantly differ‐
ent from zero means that heterozygosity across loci correlates 

with individual inbreeding, which increases the probability to de‐
tect HFCs (Szulkin et al., 2010). Our estimate of g2 was obtained 
using the r package “inbreedR” (Stoffel  et al ., 2016) by running 1,000 
bootstraps. The 95% confidence interval was defined using 1,000 
permutations. Using the same package, we also estimated iden‐
tity disequilibrium by dividing our 15 loci in two random subsets, 
testing the correlation in heterozygosity between the two subsets 
(heterozygosity–heterozygosity correlation, HHC) and repeating 
this 10,000 times, in order to obtain the HHC mean, SD and confi‐
dence interval at 95% (Balloux et al., 2004).

Although local effects would need to be substantial to be de‐
tected, we tested whether the effect of heterozygosity on fitness 
parameters (see Results) was associated with specific loci. To do 
so, we used likelihood ratio tests to compare our final models using 
Hsobs against respective models with all 15 single loci (coded 0 for 
homozygous and 1 for heterozygous) fitted as simultaneous covari‐
ates (Kuepper et al., 2010; Phillips, Jorgensen, Jolliffe, & Richardson, 
2017; Szulkin et al., 2010). In case of significance, this test would 
lend support to the local effect hypothesis.

3  | RESULTS

3.1 | Hatching to recruitment

The average Hsobs of the 7,961 hatchlings, 3,612 fledglings and 
1,388 prospectors was 0.9995 (±0.002), 0.9989 (±0.003) and 0.9990 
(±0.005), respectively (Table 1). Variation in neither fledging nor local 
prospecting probability after fledging was explained by variation in 
Hsobs (Tables 1 and 2). Local recruitment probability after prospect‐
ing, however, was positively correlated with Hsobs (Tables 1 and 2, 
Figure 1).

3.2 | Breeders

The average Hsobs of the 762 breeders was 1.0071 (±0.006) and not 
significantly different between the sexes (β = 0.004 ± 0.01, t = 0.34, 
p = 0.74): 1.0052 (±0.008) for the 426 males and 1.0095 (±0.010) for 
the 336 females (Table 1).

Variation in annual local survival probability was explained by an 
interaction between Hsobs and the variable “first reproduction (yes 
or no)” (Table 3). This interaction showed that survival was highest 
for birds with an intermediate level of Hsobs in the year following first 
reproduction, but was independent of Hsobs in experienced breeders 
(Table 3).

There was no evidence for a correlation between Hsobs and 
breeding probability (Table 3). Hsobs was, however, significantly as‐
sociated with the annual local number of fledglings produced in both 
males and females (Figure 2a, Table 3): fledgling production declined 
with heterozygosity in males, while females with an intermediate 
level of heterozygosity produced most fledglings. These signifi‐
cantly negative and quadratic effects of Hsobs in males and females, 
respectively, were also significant when analysing variation in brood 
size (Figure 2b, Table 3), but non‐significant at the level of clutch 
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size (Figure 2c, Table 3). Moreover, the effects were highly consis‐
tent across years, as indicated by an additional year‐by‐year analysis 
(Supporting Information Appendix S2).

3.3 | Local versus general effect

Based on the microsatellites, the average inbreeding coefficient in 
our colony was estimated at 0.17 ± 0.08 (min = 0.06, max = 0.66). 
Heterozygosity was weakly, but significantly correlated across loci 
(g2 = 0.0021, n = 2,888, 95% CI = 0.0002–0.0039, p = 0.003; aver‐
age HHC = 0.037 ± 0.017, CI = 0.003–0.067). Comparisons between 
the single‐locus models of local recruitment probability, male and 
female annual local reproductive success and the respective mod‐
els using Hsobs as a multilocus variable were non‐significant (local 
recruitment probability: df = 14, p = 0.47; male annual local repro‐
ductive success: df = 14, p = 0.57; female annual local reproductive 
success: df = 14, p = 0.49), suggesting a general rather than a local 
effect.

4  | DISCUSSION

Using data from a 26‐year longitudinal study of common terns, we 
found evidence for few, and small life stage‐ and sex‐specific HFCs. 
In early life, heterozygosity was not correlated with fledging prob‐
ability or local prospecting probability, but positively correlated with 
local recruitment probability. Among breeders, annual local survival 
was only correlated with heterozygosity in the year after first repro‐
duction, with survival being highest for birds with an intermediate 

level of Hsobs. Although the probability to breed was not correlated 
with heterozygosity, annual local fledgling production was nega‐
tively correlated with heterozygosity in males and highest in inter‐
mediately heterozygous females. These latter associations partly 
arose from differential hatching success only, as clutch size was not 
correlated with parental heterozygosity, while brood size was.

The few HFCs that were detected appear due to a low general 
genome‐wide effect of heterozygosity, rather than an effect of 
the heterozygosity at specific loci (local effect) and the small, but 
significant, g2 value indicates that the markers we used provide in‐
formation on inbreeding (Balloux et al., 2004; David et al., 2007). 
According to a meta‐analysis conducted by Miller and Coltman 
(2014), our low g2 as well as low HHC values should indicate weak 
HFCs, which could be difficult to detect. Our number of microsatel‐
lite loci used (15) is low, but close to the average of other HFC stud‐
ies (Chapman et al., 2009; Miller & Coltman, 2014), and our number 
of genotyped individuals (N = 7,974) far exceeds the published range 
(7–1,055), such that our number of genotypes (7,974 individuals × 15 
markers = 119,610 genotypes; Slate et al., 2004) is more than dou‐
ble the highest number of genotypes (573 individuals × 101 mark‐
ers = 57,873 genotypes; Slate et al., 2004) of all studies reviewed in 
Chapman et al. (2009; also see Harrison et al., 2011; Judson, Knapp, 
& Welch, 2018; Monceau et al., 2013; Shaner et al., 2013; Soulsbury 
& Lebigre, 2018; Velando et al., 2015; Voegeli, Saladin, Wegmann, & 
Richner, 2012 for examples of more recent studies using a similar or 
even lower number of loci for estimating HFCs). The low number of 
loci used, associated with the weak HFCs detected, could prevent 
the detection of local effects (Szulkin et al., 2010), but, as also stated 
by Szulkin et al. (2010), although a larger number of loci provide a 

TA B L E  2   Effects of observed heterozygosity (Hsobs), brood size/hatching order combinations, laying date, fledging mass, age at first 
prospecting and colony density on fledging probability, prospecting probability and recruitment probability, with parameter estimates as 
obtained from minimal adequate models and with significant effects (α < 0.05) in bold. “–” means a parameter was not fitted to the model

Dependent variable Fledging probability (n = 7,961) Prospecting probability (n = 3,607) Recruitment probability (n = 1,388)

Parameter Estimate ± SE Z value p‐value Estimate ± SE Z value p‐value Estimate ± SE Z value p‐value

Intercept 0.44 ± 0.27 1.62 0.11 −0.45 ± 0.17 −2.59 0.01 1.00 ± 0.21 4.77 <0.001

Hsobs 0.007 ± 0.03 0.27 0.79 0.007 ± 0.04 0.19 0.85 0.15 ± 0.06 2.64 <0.01

BSHO2.1a 0.02 ± 0.11 0.14 0.89 – – – – – –

BSHO2.2a −0.98 ± 0.11 −8.70 <0.001 – – – – – –

BSHO3.1a 0.11 ± 0.11 0.98 0.33 – – – – – –

BSHO3.2a −0.59 ± 0.11 −5.44 <0.001 – – – – – –

BSHO3.3a −2.31 ± 0.13 −18.45 <0.001 – – – – – –

Laying date −0.28 ± 0.03 −9.42 <0.001 – – – – – –

Fledging mass – – – 0.25 ± 0.04 6.40 <0.001 0.14 ± 0.06 2.24 0.02

Sex(female) – – – −0.04 ± 0.07 −0.57 0.57 −0.44 ± 0.12 −3.69 <0.001

Age at 1st 
prospecting

– – – – – – −0.10 ± 0.06 −1.80 0.07

Colony density – – – – – – −0.02 ± 0.19 −0.13 0.90

Marginal R2 0.13 0.01 0.02

Conditional R2 0.31 0.11 0.11

aBrood size (BS) and hatching order (HO) category. 
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more precise inbreeding estimate, a lower number of markers should 
not be used as an argument to invalidate significant findings. Indeed, 
Forstmeier, Schielzeth, Mueller, Ellegren, and Kempenaers (2012) 
found that 11 microsatellites markers distributed across the zebra 
finch genome were as informative as 1,359 SNP markers or as a 5th 
generation pedigree. Similarly, Taylor et al. (2010) reported a signif‐
icant correlation between pedigree‐based inbreeding and a panel of 
13 microsatellites.

Between hatching and local recruitment, common tern HFCs ap‐
peared to be life stage‐dependent. For the earlier life stages (i.e., 
fledging probability and local prospecting probability), we did not 
observe any associations with heterozygosity. Non‐significant HFCs 
can arise when there are too few microsatellite loci assessed that do 
not reflect genome‐wide heterozygosity, which could be the case in 
our study. However, despite our relatively low number of loci, we 
found significant HFCs for later life stages and g2 and HHC values 
were significant. Alternatively, strong selection on a non‐heterozy‐
gosity‐related trait can mask any effect of heterozygosity if not cor‐
rected for (Annavi et al., 2014; Arct et al., 2017; Harrison et al., 2011, 
but see Ferrer, Garcia‐Navas, Jose Sanz, & Ortego, 2016; Forcada & 
Hoffman, 2014; Lesbarreres, Primmer, Laurila, & Merila, 2005). In 
our colony, variation in fledging success is to a large extent explained 
by unpredictable and variable food supplies (Daenhardt & Becker, 
2011; Vedder et al., 2019) and, owing to an efficient brood reduction 
strategy, hatchling mortality peaks within the first week of life and 
is strongly biased towards second and third hatchlings (Vedder et 
al., 2017). Moreover, fledging success covaries with laying date, such 
that hatchlings from earlier broods have an increased fledging prob‐
ability. Here, we correct for these hatching order and laying date ef‐
fects and show that heterozygosity, which does not differ between 
siblings of different hatching order (F4,4441 = 1.07, p‐value = 0.37) 
or vary with laying date (β = 0.49 ± 0.47, t = 1.05, p‐value = 0.30), 

does not act as an additional cause of chick mortality. The period 
between fledging and prospecting acts as another strong selective 
phase (Braasch, Schauroth, & Becker, 2009; Szostek & Becker, 2015). 
For this phase, we have so far found little evidence for individual‐
level determinants of survival: neither hatching order (Vedder et al. 
in revision), quality of the nest of origin (Vedder & Bouwhuis, 2018), 
nor hatching date, age at fledging or post‐fledging departure date 
(Braasch et al., 2009) explained variation in prospecting probability. 
The only exception was a positive effect on prospecting and recruit‐
ment probability of fledging mass (this study) and last post‐fledging 
mass (Braasch et al., 2009). However, prospecting probability also 
varied with cohort‐level properties, namely the per‐pair average 
number of fledglings produced (Vedder & Bouwhuis, 2018), colony 
size in the year of fledging (Szostek et al., 2014) and wintering con‐
ditions (Szostek & Becker, 2015). Perhaps survival from fledging to 
prospecting therefore is mostly determined by the environmental 
conditions a chick experiences before and after fledging (e.g., en 
route: Oppel et al., 2015; Rotics et al., 2016).

Because HFCs are expected to be strongest early in life (Koehn 
& Gaffney, 1984), many studies focused on early‐life stages (Annavi 
et al., 2014; Arct et al., 2017; Hansson, Bensch, Hasselquist, & 
Akesson, 2001; but see Höglund et al., 2002; Taylor & Jamieson, 
2007; Velando et al., 2015). The few studies that did investigate 
different age classes mostly compared young/juvenile stages ver‐
sus adult stages (Canal et al., 2014; Cohas et al., 2009; Judson et 
al., 2018; Lieutenant‐Gosselin & Bernatchez, 2006; Monceau et 
al., 2013; but see also Olano‐Marin et al., 2011; Von Hardenberg 
et al., 2007) and most of them found contrasting heterozygosity 
effects between classes. Interestingly, these studies only detected 
significant HFCs at the juvenile stage, most likely due to the selec‐
tive mortality of the most homozygous individuals at this stage, 
and therefore contrast with our own. In our study system, as 

F I G U R E  1   Association between 
observed heterozygosity (Hsobs) and 
local recruitment probability of local 
prospectors. Dots represent the 
observed local recruitment as a function 
of the standardized Hsobs. Dot size is 
proportional to the number of local 
prospectors. Lines represent the model 
prediction (in bold) and its associated 
standard errors (dashed)
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explained above, early‐life selection seems mostly stochastically 
environmentally determined. Such strong heterozygosity‐inde‐
pendent selection before individuals start to reproduce may have 
allowed maintenance of a sufficient variability in prospector and 
breeder heterozygosity to detect HFCs. Indeed, a positive HFC 
was found in prospectors with respect to local recruitment prob‐
ability. The most homozygous prospectors had a lower chance to 
recruit into the colony as breeders than the more heterozygous 
ones. The local prospectors which did not locally recruit can either 
have died or have recruited in another colony, two options that we 
unfortunately cannot distinguish. However, we would hypothesize 
that the observed heterozygosity‐recruitment correlation could 
potentially be due to a negative heterozygosity‐dispersal correla‐
tion. The importance of heterozygosity for dispersal decisions 
has been highlighted by theoretical studies (Motro, 1991; Roze 
& Rousset, 2009), but empirical studies are still rare (Gillingham, 
Cezilly, Wattier, & Bechet, 2013; Liebgold, Kramer, Roomian, 
Dolezar, & Cabe, 2018; Shafer, Poissant, Cote, & Coltman, 2011; 
Vanpé et al., 2015). In mountain goats (Oreamnos americanus, 
Shafer et al., 2011) and greater flamingos (Phoenicopterus roseus, 
Gillingham et al., 2013), however, heterozygosity was negatively 
correlated with dispersal, which supports the fitness‐associated 
dispersal hypothesis (FAD, Hadany, Eshel, & Motro, 2004; Shafer 
et al., 2011). This hypothesis assumes that homozygous individuals 
are less competitive and more likely to disperse due to their lower 
capacity to acquire resources and/or mates. Our study population 
is indeed characterised by competition for access to partners, 
food and suitable places to breed (Becker, 2015; Becker et al., 
2008; Szostek et al., 2014), such that the FAD hypothesis corrobo‐
rates our results and may explain the positive correlation between 
heterozygosity and recruitment probability we observed. Studies 
tracking fledglings and subadults up to their recruitment would, 
however, be needed to more thoroughly assess this hypothesis.

Among breeders, our study revealed both a negative and two qua‐
dratic HFCs. In breeding males, fledgling production was negatively 
correlated with heterozygosity, indicating that homozygous males 
have a higher reproductive success. This pattern partly originated 
from homozygous males benefitting from an improved hatching suc‐
cess, but not from their partners producing larger clutches. Among 
females, we found reproductive success to be highest for individuals 
with intermediate levels of heterozygosity, a pattern which again orig‐
inated partly during hatching. At present, we have no credible expla‐
nation for the differences in HFC between the sexes and between 
fitness components. We can only speculate on different selective 
processes being responsible for survival and reproduction between 
the sexes, but more work would be needed to identify such processes.

Overall, thanks to our large sample size and long‐term study, 
we were able to assess heterozygosity‐fitness correlations across 
life stages and the sexes. Our analyses revealed the existence of 
contrasting sex‐specific and life stage‐specific correlations and em‐
phasize the importance of assessing fitness consequences across 
complete life histories when aiming to understand the selective pro‐
cess leading to evolutionary change.
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