245 research outputs found

    Investigation of the Parasympathetic Effects of Lavender Essential Oil in Humans

    Get PDF
    The purpose of this study will be to investigate the claim that administration of lavender (Lavandula angustifolia) essential oil (topically, orally, and/or respiratorily) produces a relaxative effect in human subjects. This investigation will theoretically be conducted in two stages. Stage one will focus primarily on determining the presence of therapeutic effects and the relative effectiveness of lavender in several application modalities. Stage two will proceed based on findings from stage one. If significant parasympathetic effects are observed in relation to one or more of the lavender oil modalities described above, a more focused investigation will be conducted in stage two to ascertain the specific active chemical component(s) in the oil that stimulate(s) the therapeutic effect

    Probing the Influence of Single-Site Mutations in the Central Cross-β Region of Amyloid β (1–40) Peptides

    Get PDF
    Amyloid β (Aβ) is a peptide known to form amyloid fibrils in the brain of patients suffering from Alzheimer’s disease. A complete mechanistic understanding how Aβ peptides form neurotoxic assemblies and how they kill neurons has not yet been achieved. Previous analysis of various Aβ40 mutants could reveal the significant importance of the hydrophobic contact between the residues Phe19 and Leu34 for cell toxicity. For some mutations at Phe19, toxicity was completely abolished. In the current study, we assessed if perturbations introduced by mutations in the direct proximity of the Phe19/Leu34 contact would have similar relevance for the fibrillation kinetics, structure, dynamics and toxicity of the Aβ assemblies. To this end, we rationally modified positions Phe20 or Gly33. A small library of Aβ40 peptides with Phe20 mutated to Lys, Tyr or the non-proteinogenic cyclohexylalanine (Cha) or Gly33 mutated to Ala was synthesized. We used electron microscopy, circular dichroism, X-ray diffraction, solid-state NMR spectroscopy, ThT fluorescence and MTT cell toxicity assays to comprehensively investigate the physicochemical properties of the Aβ fibrils formed by the modified peptides as well as toxicity to a neuronal cell line. Single mutations of either Phe20 or Gly33 led to relatively drastic alterations in the Aβ fibrillation kinetics but left the global, as well as the local structure, of the fibrils largely unchanged. Furthermore, the introduced perturbations caused a severe decrease or loss of cell toxicity compared to wildtype Aβ40. We suggest that perturbations at position Phe20 and Gly33 affect the fibrillation pathway of Aβ40 and, thereby, influence the especially toxic oligomeric species manifesting so that the region around the Phe19/Leu34 hydrophobic contact provides a promising site for the design of small molecules interfering with the Aβ fibrillation pathway

    Collaboration networks of the implementation science centers for cancer control: A social network analysis

    Get PDF
    BACKGROUND: Multi-center research initiatives offer opportunities to develop and strengthen connections among researchers. These initiatives often have goals of increased scientific collaboration which can be examined using social network analysis. METHODS: The National Cancer Institute (NCI)-funded Implementation Science Centers in Cancer Control (ISC RESULTS: Of the 192 invitees, 182 network members completed the survey (95%). The most prevalent roles were faculty (60%) and research staff (24%). Almost one-quarter (23%) of members reported advanced expertise in IS, 42% intermediate, and 35% beginner. Most members were female (69%) and white (79%). One-third (33%) of collaboration ties were among members from different centers. Across all collaboration activities, the network had a density of 14%, suggesting moderate cohesion. Degree centralization (0.33) and betweenness centralization (0.07) measures suggest a fairly dispersed network (no single or few central member(s) holding all connections). The most prevalent and densely connected collaboration was in planning/conducting research (1470 ties; 8% density). Practice/policy dissemination had the fewest collaboration, lowest density (284 ties\u27 3% density), and the largest number of non-connected members (n=43). Access to the ISC CONCLUSIONS: Results establish a baseline for assessing the growth of cross-center collaborations, highlighting specific areas in need of particular growth in network collaborations such as increasing engagement of racial and ethnic minorities and trainees or those with less expertise in IS

    STopTox: An in Silico Alternative to Animal Testing for Acute Systemic and Topical Toxicity

    Get PDF
    BACKGROUND: Modern chemical toxicology is facing a growing need to Reduce, Refine, and Replace animal tests (Russell 1959) for hazard identification. The most common type of animal assays for acute toxicity assessment of chemicals used as pesticides, pharmaceuticals, or in cosmetic products is known as a "6-pack" battery of tests, including three topical (skin sensitization, skin irritation and corrosion, and eye irritation and corrosion) and three systemic (acute oral toxicity, acute inhalation toxicity, and acute dermal toxicity) end points. METHODS: We compiled, curated, and integrated, to the best of our knowledge, the largest publicly available data sets and developed an ensemble of quantitative structure-activity relationship (QSAR) models for all six end points. All models were validated according to the Organisation for Economic Co-operation and Development (OECD) QSAR principles, using data on compounds not included in the training sets. RESULTS: In addition to high internal accuracy assessed by cross-validation, all models demonstrated an external correct classification rate ranging from 70% to 77%. We established a publicly accessible Systemic and Topical chemical Toxicity (STopTox) web portal (https://stoptox.mml.unc.edu/) integrating all developed models for 6-pack assays. CONCLUSIONS: We developed STopTox, a comprehensive collection of computational models that can be used as an alternative to in vivo 6-pack tests for predicting the toxicity hazard of small organic molecules. Models were established following the best practices for the development and validation of QSAR models. Scientists and regulators can use the STopTox portal to identify putative toxicants or nontoxicants in chemical libraries of interest. https://doi.org/10.1289/EHP9341

    Non-Sequential Double Ionization of Ne in Intense Laser Pulses: A Coincidence Experiment

    Get PDF
    The dynamics of Neon double ionization by 25 fs, 1.0 PW/cm2 laser pulses at 795 nm has been studied in a many particle coincidence experiment. The momentum vectors of all ejected atomic fragments (electrons and ions) have been measured using combined electron and recoil-ion momentum spectroscopy. Electron emission spectra for double and single ionization will be discussed. In both processes the mean electron energies differ considerably and high energetic electrons with energies of more than 120 eV have been observed for double ionization. The experimental results are in qualitative agreement with the rescattering model

    Separation of Recollision Mechanisms in Nonsequential Strong Field Double Ionization of Ar: The Role of Excitation Tunneling

    Get PDF
    Vector momentum distributions of two electrons created in double ionization of Ar by 25 fs, 0.25PW/cm2 laser pulses at 795 nm have been measured using a “reaction microscope.” At this intensity, where nonsequential ionization dominates, distinct correlation patterns are observed in the two-electron momentum distributions. A kinematical analysis of these spectra within the classical “recollision model” revealed an (e,2e)-like process and excitation with subsequent tunneling of the second electron as two different ionization mechanisms. This allows a qualitative separation of the two mechanisms demonstrating that excitation-tunneling is the dominant contribution to the total double ionization yield

    Present and Future CP Measurements

    Get PDF
    We review theoretical and experimental results on CP violation summarizing the discussions in the working group on CP violation at the UK phenomenology workshop 2000 in Durham.Comment: 104 pages, Latex, to appear in Journal of Physics

    Measurement of the ttbar Production Cross Section in ppbar Collisions at sqrt{s}=1.96 TeV using Lepton + Jets Events with Secondary Vertex b-tagging

    Full text link
    We present a measurement of the ttbar production cross section using events with one charged lepton and jets from ppbar collisions at a center-of-mass energy of 1.96 TeV. In these events, heavy flavor quarks from top quark decay are identified with a secondary vertex tagging algorithm. From 162 pb-1 of data collected by the Collider Detector at Fermilab, a total of 48 candidate events are selected, where 13.5 +- 1.8 events are expected from background contributions. We measure a ttbar production cross section of 5.6^{+1.2}_{-1.1} (stat.) ^{+0.9}_{0.6} (syst.) pb.Comment: 28 pages, 20 figures. Published in Physical Review

    Genotype determination for polymorphisms in linkage disequilibrium

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Genome-wide association studies with single nucleotide polymorphisms (SNPs) show great promise to identify genetic determinants of complex human traits. In current analyses, genotype calling and imputation of missing genotypes are usually considered as two separated tasks. The genotypes of SNPs are first determined one at a time from allele signal intensities. Then the missing genotypes, i.e., no-calls caused by not perfectly separated signal clouds, are imputed based on the linkage disequilibrium (LD) between multiple SNPs. Although many statistical methods have been developed to improve either genotype calling or imputation of missing genotypes, treating the two steps independently can lead to loss of genetic information.</p> <p>Results</p> <p>We propose a novel genotype calling framework. In this framework, we consider the signal intensities and underlying LD structure of SNPs simultaneously by estimating both cluster parameters and haplotype frequencies. As a result, our new method outperforms some existing algorithms in terms of both call rates and genotyping accuracy. Our studies also suggest that jointly analyzing multiple SNPs in LD provides more accurate estimation of haplotypes than haplotype reconstruction methods that only use called genotypes.</p> <p>Conclusion</p> <p>Our study demonstrates that jointly analyzing signal intensities and LD structure of multiple SNPs is a better way to determine genotypes and estimate LD parameters.</p
    • …
    corecore