28 research outputs found

    Self-assembly and Structure Investigation of Recombinant S-layer Proteins Expressed in Yeast for Nanobiotechnological Applications: Self-assembly and Structure Investigation of Recombinant S-layer Proteins Expressed in Yeast for Nanobiotechnological Applications

    Get PDF
    In numerous Gram-negative and Gram-positive bacteria as well as in Archaea SL proteins form the outermost layer of the cell envelope. SL (glyco)monomers self-assemble with oblique (p2), tetragonal (p4), or hexagonal (p3, p6) symmetries [12]. SL subunits interact with each other and with the underlying cell surface by relatively weak non-covalent forces such as hydrogen-bonds, ionic bonds, salt-bridges or hydrophobic interactions. This makes them easy to isolate by applying chaotropic agents like urea and guanidine hydrochloride (GuHCl), chelating chemicals, or by changing the pH of the environment [10]. Upon dialysis in an ambient buffer monomers recrystallize into regular arrays that possess the forms of flat sheets, open ended cylinders, or spheres on solid substrates, at air-water intefaces and on lipid films, making them appealing for nanobiotechnological applications [3, 18]. The aim of this study was to investigate the structure, thermal stability, in vivo self-assembly process, recrystallization and metallization of three different recombinant SL proteins (SslA-eGFP, mSbsC-eGFP and S13240-eGFP) expressed in yeast S. cerevisiae BY4741 which could be further used in nanobiotechnological applications. In order to fulfill this aim, I investigated the in vivo expression of SL proteins (SslA, SbsC, S13240) tagged with eGFP (SL-eGFP) in the yeast S. cerevisiae BY4141. First, I characterized the heterologous expression of SL fusion constructs with growth and fluorescence measurements combined with Western blot analyses. Fluorescence microscopy investigations of overnight grown cultures showed that SslA-eGFP fusion protein was expressed as fluorescent patches, mSbsC-eGFP as tubular networks, and S13240-eGFP as hollow-like fibrillar network structures, while eGFP did not show any distinct structure Thermal stability of in vivo expressed SL-eGFP fusion proteins were investigated by fluorescence microscopy and immunodetection. In vivo self-assembly kinetics during mitosis and meiosis was the second main issue. In parallel, association of in vivo mSbsC-eGFP structures with the cellular components was of interest. A network of tubular structures in the cytosol of the transformed yeast cells that did not colocalize with microtubules or the actin cytoskeleton was observed. Time-resolved analysis of the formation of these structures during vegetative growth and sporulation was investigated by live fluorescence microscopy. While in meiosis ascospores seemed to receive assembled structures from the diploid cells, during mitosis surface layer structures were formed de novo in the buds. Surface layer assembly always started with the appearance of a dot-like structure in the cytoplasm, suggesting a single nucleation point. In order to get these in vivo SL assemblies stably outside the cells (in situ), cell distruption experiments were conducted. The tubular structures formed by the protein in vivo were retained upon bursting the cells by osmotic shock; however their average length was decreased. During dialysis, monomers obtained by treatment with chaotropic agents recrystallized again to form tube-like structures. This process was strictly dependent on calcium ions, with an optimal concentration of 10 mM. Further increase of the Ca2+ concentration resulted in multiple non-productive nucleation points. It was further shown that the lengths of the S-layer assemblies increased with time and could be controlled by pH. After 48 hours the average length at pH 9.0 was 4.13 µm compared to 2.69 µm at pH 5.5. Successful chemical deposition of platinum indicates the potential of recrystallized mSbsC-eGFP structures for nanobiotechnological applications. For example, such metalized protein nanotubes could be used in conductive nanocircuit technologies as nanowires

    Long term observation of Magnetospirillum gryphiswaldense in a microfluidic channel

    Full text link
    We controlled and observed individual magnetotactic bacteria (Magnetospirillum gryphiswaldense) inside a 5 {\mu}m high microfluidic channel for over four hours. After a period of constant velocity, the duration of which varied between bacteria, all observed bacteria showed a gradual decrease in their velocity of about 25 nm/s2^2. After coming to a full stop, different behaviour was observed, ranging from rotation around the centre of mass synchronous with the direction of the external magnetic field, to being completely immobile. Our results suggest that the influence of the high intensity illumination and the presence of the channel walls are important parameters to consider when performing observations of such long duration.Comment: 7 pages, 11 figure

    Performance and application of an open source automated magnetic optical density meter for analyzing magnetotactic bacteria

    Get PDF
    We present a spectrophotometer (optical density meter) combined with electromagnets dedicated to the analysis of magnetotactic bacteria. We have ensured that our system, called MagOD, can be easily reproduced by providing the source of the 3D prints for the housing, electronic designs, circuit board layouts, and microcontroller software. We compare the performance of this novel system to existing adapted commercial spectrophotometers. In addition, we demonstrate its use by analyzing the absorbance of magnetotactic bacteria as a function of their orientation with respect to the light path and their speed of reorientation after the field has been rotated by 90o. We continuously monitored the development of a culture of magnetotactic bacteria over a period of five days, and measured the development of their velocity distribution over a period of one hour. Even though this dedicated spectrophotometer is relatively simple to construct and cost-effective, a range of magnetic field-dependent parameters can be extracted from suspensions of magnetotactic bacteria. Therefore, this instrument will help the magnetotactic research community to understand and apply this intriguing micro-organism

    An open-source automated magnetic optical density meter for analysis of suspensions of magnetic cells and particles

    Get PDF
    We present a spectrophotometer (optical density meter) combined with electromagnets dedicated to the analysis of suspensions of magnetotactic bacteria. The instrument can also be applied to suspensions of other magnetic cells and magnetic particles. We have ensured that our system, called MagOD, can be easily reproduced by providing the source of the 3D prints for the housing, electronic designs, circuit board layouts, and microcontroller software. We compare the performance of our system to existing adapted commercial spectrophotometers. In addition, we demonstrate its use by analyzing the absorbance of magnetotactic bacteria as a function of their orientation with respect to the light path and their speed of reorientation after the field has been rotated by 90°. We continuously monitored the development of a culture of magnetotactic bacteria over a period of 5 days and measured the development of their velocity distribution over a period of one hour. Even though this dedicated spectrophotometer is relatively simple to construct and cost-effective, a range of magnetic field-dependent parameters can be extracted from suspensions of magnetotactic bacteria. Therefore, this instrument will help the magnetotactic research community to understand and apply this intriguing micro-organism

    Nafion ve alternatif polimer elektrolit zarlar kullanılarak zar elektrot yapısı hazırlanması ve performansı.

    No full text
    The first aim of this study is the development of extracellular recombinant therapeutic protease streptokinase producing Bacillus sp., and the second aim is to determine fermentation characteristics for streptokinase production. In this context, the signal (pre-) DNA sequence of B.licheniformis (DSM1969) extracellular serine alkaline protease enzyme gene (subC: Acc. No. X03341) was ligated to 5’ end of the streptokinase gene (skc: Acc. No. S46536) by SOE (Gene Splicing by Overlap Extension) method through PCR. The resulting hybrid gene pre(subC)::skc was cloned into the pUC19 plasmid. Then, the hybrid gene was sub-cloned to pMK4 plasmid which is an E. coli-Bacillus shuttle vector with high copy number and high stability. Recombinant plasmid pMK4::pre(subC)::skc was finally transferred into B. subtilis (npr- apr-) and B. licheniformis 749/C (ATCC 25972) species. Streptokinase production capacities of these two recombinant Bacillus species were compared. The highest production was observed in recombinant B. lichenifomis 749/C (ATCC 25972) strain in a defined medium which was optimized in terms of carbon and nitrogen sources by a statistical approach, namely Response Surface Methodology (RSM). RSM evaluated the streptokinase concentration as the response and the medium components as the independent variables. The highest recombinant streptokinase concentration was found as 0.0237 kgm-3 at glucose and (NH4)2HPO4 concentrations of 4.530 and 4.838 kgm-3 respectively. The fermentation and oxygen transfer characteristics of the streptokinase production were investigated in a 3 dm3 pilot scale batch bioreactor (Braun CT2-2) equipped with temperature, pH, foam, air inlet and agitation rate controls having a working volume of VR=1.65 dm3 using the production medium optimized for the recombinant B. lichenifomis 749/C (ATCC 25972) strain. Streptokinase and β-lactamase activities, cell, glucose and organic acid concentrations, dissolved oxygen, pH, oxygen uptake rate, overall liquid phase mass transfer coefficient for oxygen, maintenance coefficient for oxygen, specific cell growth rate and yield coefficients were determined through the bioprocess. The bioprocess of recombinant streptokinase production was performed at uncontrolled pH of these bioreactor operation conditions: air inlet rate of Q0/VR=0.5 vvm, and the agitation rate of N=400min-1. The resulting streptokinase volumetric activity reached its maximum as 1.16 PUml-1 (0.0026 g/l streptokinase) at t=20 h.M.S. - Master of Scienc

    Self-assembly and Structure Investigation of Recombinant S-layer Proteins Expressed in Yeast for Nanobiotechnological Applications: Self-assembly and Structure Investigation of Recombinant S-layer Proteins Expressed in Yeast for Nanobiotechnological Applications

    Get PDF
    In numerous Gram-negative and Gram-positive bacteria as well as in Archaea SL proteins form the outermost layer of the cell envelope. SL (glyco)monomers self-assemble with oblique (p2), tetragonal (p4), or hexagonal (p3, p6) symmetries [12]. SL subunits interact with each other and with the underlying cell surface by relatively weak non-covalent forces such as hydrogen-bonds, ionic bonds, salt-bridges or hydrophobic interactions. This makes them easy to isolate by applying chaotropic agents like urea and guanidine hydrochloride (GuHCl), chelating chemicals, or by changing the pH of the environment [10]. Upon dialysis in an ambient buffer monomers recrystallize into regular arrays that possess the forms of flat sheets, open ended cylinders, or spheres on solid substrates, at air-water intefaces and on lipid films, making them appealing for nanobiotechnological applications [3, 18]. The aim of this study was to investigate the structure, thermal stability, in vivo self-assembly process, recrystallization and metallization of three different recombinant SL proteins (SslA-eGFP, mSbsC-eGFP and S13240-eGFP) expressed in yeast S. cerevisiae BY4741 which could be further used in nanobiotechnological applications. In order to fulfill this aim, I investigated the in vivo expression of SL proteins (SslA, SbsC, S13240) tagged with eGFP (SL-eGFP) in the yeast S. cerevisiae BY4141. First, I characterized the heterologous expression of SL fusion constructs with growth and fluorescence measurements combined with Western blot analyses. Fluorescence microscopy investigations of overnight grown cultures showed that SslA-eGFP fusion protein was expressed as fluorescent patches, mSbsC-eGFP as tubular networks, and S13240-eGFP as hollow-like fibrillar network structures, while eGFP did not show any distinct structure Thermal stability of in vivo expressed SL-eGFP fusion proteins were investigated by fluorescence microscopy and immunodetection. In vivo self-assembly kinetics during mitosis and meiosis was the second main issue. In parallel, association of in vivo mSbsC-eGFP structures with the cellular components was of interest. A network of tubular structures in the cytosol of the transformed yeast cells that did not colocalize with microtubules or the actin cytoskeleton was observed. Time-resolved analysis of the formation of these structures during vegetative growth and sporulation was investigated by live fluorescence microscopy. While in meiosis ascospores seemed to receive assembled structures from the diploid cells, during mitosis surface layer structures were formed de novo in the buds. Surface layer assembly always started with the appearance of a dot-like structure in the cytoplasm, suggesting a single nucleation point. In order to get these in vivo SL assemblies stably outside the cells (in situ), cell distruption experiments were conducted. The tubular structures formed by the protein in vivo were retained upon bursting the cells by osmotic shock; however their average length was decreased. During dialysis, monomers obtained by treatment with chaotropic agents recrystallized again to form tube-like structures. This process was strictly dependent on calcium ions, with an optimal concentration of 10 mM. Further increase of the Ca2+ concentration resulted in multiple non-productive nucleation points. It was further shown that the lengths of the S-layer assemblies increased with time and could be controlled by pH. After 48 hours the average length at pH 9.0 was 4.13 µm compared to 2.69 µm at pH 5.5. Successful chemical deposition of platinum indicates the potential of recrystallized mSbsC-eGFP structures for nanobiotechnological applications. For example, such metalized protein nanotubes could be used in conductive nanocircuit technologies as nanowires

    Self-assembly and Structure Investigation of Recombinant S-layer Proteins Expressed in Yeast for Nanobiotechnological Applications Self-assembly and Structure Investigation of Recombinant S-layer Proteins Expressed in Yeast for Nanobiotechnological Applications

    No full text
    In numerous Gram-negative and Gram-positive bacteria as well as in Archaea SL proteins form the outermost layer of the cell envelope. SL (glyco)monomers self-assemble with oblique (p2), tetragonal (p4), or hexagonal (p3, p6) symmetries [12]. SL subunits interact with each other and with the underlying cell surface by relatively weak non-covalent forces such as hydrogen-bonds, ionic bonds, salt-bridges or hydrophobic interactions. This makes them easy to isolate by applying chaotropic agents like urea and guanidine hydrochloride (GuHCl), chelating chemicals, or by changing the pH of the environment [10]. Upon dialysis in an ambient buffer monomers recrystallize into regular arrays that possess the forms of flat sheets, open ended cylinders, or spheres on solid substrates, at air-water intefaces and on lipid films, making them appealing for nanobiotechnological applications [3, 18]. The aim of this study was to investigate the structure, thermal stability, in vivo self-assembly process, recrystallization and metallization of three different recombinant SL proteins (SslA-eGFP, mSbsC-eGFP and S13240-eGFP) expressed in yeast S. cerevisiae BY4741 which could be further used in nanobiotechnological applications. In order to fulfill this aim, I investigated the in vivo expression of SL proteins (SslA, SbsC, S13240) tagged with eGFP (SL-eGFP) in the yeast S. cerevisiae BY4141. First, I characterized the heterologous expression of SL fusion constructs with growth and fluorescence measurements combined with Western blot analyses. Fluorescence microscopy investigations of overnight grown cultures showed that SslA-eGFP fusion protein was expressed as fluorescent patches, mSbsC-eGFP as tubular networks, and S13240-eGFP as hollow-like fibrillar network structures, while eGFP did not show any distinct structure Thermal stability of in vivo expressed SL-eGFP fusion proteins were investigated by fluorescence microscopy and immunodetection. In vivo self-assembly kinetics during mitosis and meiosis was the second main issue. In parallel, association of in vivo mSbsC-eGFP structures with the cellular components was of interest. A network of tubular structures in the cytosol of the transformed yeast cells that did not colocalize with microtubules or the actin cytoskeleton was observed. Time-resolved analysis of the formation of these structures during vegetative growth and sporulation was investigated by live fluorescence microscopy. While in meiosis ascospores seemed to receive assembled structures from the diploid cells, during mitosis surface layer structures were formed de novo in the buds. Surface layer assembly always started with the appearance of a dot-like structure in the cytoplasm, suggesting a single nucleation point. In order to get these in vivo SL assemblies stably outside the cells (in situ), cell distruption experiments were conducted. The tubular structures formed by the protein in vivo were retained upon bursting the cells by osmotic shock; however their average length was decreased. During dialysis, monomers obtained by treatment with chaotropic agents recrystallized again to form tube-like structures. This process was strictly dependent on calcium ions, with an optimal concentration of 10 mM. Further increase of the Ca2+ concentration resulted in multiple non-productive nucleation points. It was further shown that the lengths of the S-layer assemblies increased with time and could be controlled by pH. After 48 hours the average length at pH 9.0 was 4.13 µm compared to 2.69 µm at pH 5.5. Successful chemical deposition of platinum indicates the potential of recrystallized mSbsC-eGFP structures for nanobiotechnological applications. For example, such metalized protein nanotubes could be used in conductive nanocircuit technologies as nanowires

    Impact of smoking on disease severity in patients with plaque type psoriasis

    No full text
    Background and Design: Psoriasis is a chronic enflammatory systemic disease involving skin, scalp, nails and joints and is characterized by remission and activation periods. Although the etiopathogenesis of psoriasis has not been fully elucidated, many genetic and environmental factors are believed to have a role in the development of the disease. Obesity, smoking, family history of psoriasis, repetitive physical traumas and stress are the factors thought to affect the severity and progress of the disease. In this study, we aimed to investigate the effects of smoking on the clinical severity of psoriasis in patients with chronic plaque psoriasis. Materials and Methods: Three hundred outpatients with chronic plaque-type psoriasis were enrolled in the study. Data on age, gender, family history, smoking history, educational status, history of chronic illness, and psoriasis area severity index (PASI) scores were recorded for each patient. The effects of these factors on PASI were evaluated. Results: Current smokers, never smokers and former smokers were compared in terms of disease severity. The median PASI values of current smokers and never smokers were compared. The mean PASI value was statistically significantly higher in smokers (p=0.049). In multiple logistic regression analysis, it was detected that the risk of moderate and severe disease increased by male sex 2 times, by family history 2.3 times, and by smoking period above 20 years, 10 times. In smokers of more than 1 pack a day, this risk further increased. Conclusion: On the basis of these data, it may be concluded that smoking affects the severity of disease significantly. In addition to amount of daily cigarette consumption, smoking period was shown to have an effect on the severity of disease. Elimination of risk factors such as smoking, which appears to increase the severity of diseases, may be helpful in the management of psoriasis

    Bacteriophages as Templates for Manufacturing Supramolecular Structures

    No full text
    SS phages are genetically enginnered by replacing 2 N-terminal amino acids of the p8 coat protein of the fd phage. AGE and zeta potential measurements show that SS phages carry at least 1/4 less net negative surface charge than fd phages. Morphology and thickness of phages are studied at different counterion concentrations (10-3, 10-2 and 10-1M) by AFM, SEM and immunofluorescence analyses. Bundles induced by CoCl2 and CaCl2 are either metallized by chemical reduction or biomineralized for apatite-like material formation. EDX spectroscopy confirms the presence of Co, P and Ca peaks in mineralized samples. Such bottom-up manufactured phage scaffolds might be applied in bioengineering studies. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

    Isolation, microscopic and magnetotactic characterization of Magnetospirillum moscoviense MS-24 from Banjosa Lake, Pakistan

    No full text
    At currently, approximately 70 species of magnetotactic bacteria have been identified; thus, there is an urgent need to identify more magnetotactic bacteria from diverse environmental sources with potential applications in industry and biotechnology. To the best of our knowledge, this is the first magnetotactic bacterial strain discovered in Pakistan. The first magnetotactic bacteria, Magnetospirillum moscoviense MS-24, was isolated from Banjosa Lake (Rawalakot), Pakistan, in the current investigation. Magnetospirillum moscoviense MS-24 was screened using the Racetrack method. The Magnetospirillum moscoviense MS-24 were physically characterised using Atomic Force Microscopy, High-Resolution Scanning Electron Microscopy, and Transmission Electron Microscopy. The current study used microscopy to illustrate the shape of bacteria and to find a very obvious chain of magnetosomes within the bacterial cell. The Magnetospirillum moscoviense MS-24 measured about 4 ± 0.04 µm in length and 600 ± 0.02 nm in diameter. The microfluidic chip experiments were also used to detect magnetotaxis behaviour in bacteria.</p
    corecore