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Abbreviations 
 
aa        Amino acid 

AFM               Atomic force microscopy 

AMP            Affinity micro particles 

bp           Base pairs 

BP          Band pass 

BS                   Beam splitter 

C-terminal         Carboxy-terminal 

DNA            Deoxyribonucleic acid 

dNTP           Deoxynucleosidetriphosphate 

eGFP Enhanced green fluorescent protein 

EBV          Epstein–Barr virus 

Em              Emission 

Ex            Excitation 

GRAS               Generally recognized as safe 

GFP            Green fluorescent protein 

IgG               Immunoglobulin G 

kDa                Kilodalton 

N-terminal           Amino-terminal 

OD                  Optical density 

PCR              Polymerase chain reaction 

RNA         Ribonucleic acid 

RT                 Room temperature 

SCWP             Secondary cell wall polymer 

SDS                  Sodium dodecyl sulfate 

SDS-PAGE      SDS polyacrylamide gel electrophoresis 

SEM                      Scanning electron microscopy 

S-layer              Surface layer 

SLH-domain            S-layer homology domain 

SslA                 Sporosarcina ureae S-layer protein A
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sslA Sporosarcina ureae S-layer gene A 

SbsC B. stearothermophilus ATCC 12980 S-layer protein C 

sbsC B. stearothermophilus ATCC 12980 S-layer gene C 

S13240 B. stearothermophilus DSM 13240 S-layer protein 

s13240 B. stearothermophilus DSM 13240 S-layer gene 

SUM         S-layer ultrafiltration membrane 

TEM                 Transmission electron microscopy 

V                    Volt 

v/v               Volume per volume 

w/v           Weight per volume 

 

 

Amino acids 
 

A Ala alanine    M Met methionine 

C Cys cysteine   N Asn asparagine 

D Asp aspartate   P Pro proline 

E Glu glutamate   Q Gln glutamine 

F Phe phenylalanine   R Arg arginine 

G Gly glycin    S Ser serine 

H His histidine   T Thr threonine 

I Ile isoleucine   V Val valine 

K Lys lysine    W Trp tryptophan 

L Leu leucine    Y Tyr tyrosine 
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Aim of the Study 
 

Numerous Gram-negative, Gram-positive bacteria and archaea possess S-layers (SLs) 

covering their outermost layers. SLs which consist of protein (or glycoprotein) subunits can 

self-assemble into highly regular planar structures [1]. Up to 20% of total protein content of 

the corresponding prokaryotic cells is composed of these two-dimensional arrays [2]. 

Morphological, structural and genetic investigations indicated that SLs are the simplest form 

of membranes [3]. SL subunits interact with each other and with the underlying cell surface 

by relatively weak non-covalent forces such as hydrogen-bonds, ionic bonds, salt-bridges or 

hydrophobic interactions. This makes them easy to isolate by applying chaotropic agents like 

urea and guanidine hydrochloride (GuHCl), chelating chemicals, or by changing the pH of 

the environment [10]. Upon dialysis in an ambient buffer monomers recrystallize into regular 

arrays in the form of flat sheets, open ended cylinders, or spheres on solid substrates, at air-

water intefaces and on lipid films, making them appealing for nanobiotechnological 

applications [5]. The aim of this study was to investigate the structure, thermal stability, in 

vivo self-assembly, recrystallization and metallization of three different recombinant SL 

proteins (SslA-eGFP, mSbsC-eGFP and S13240-eGFP) expressed in yeast Saccharomyces 

(S.) cerevisiae BY4741 which could be further used in nanobiotechnological applications. 

 

The first aim was to characterize the heterologous expression and structure of in vivo SL-

eGFP fusion proteins with growth and fluorescence measurements coupled with Western blot 

analyses and fluorescence microscopy. Secondly, I was interested in thermal stabilities of in 

vivo expressed SL-eGFP fusion proteins which could be analyzed by fluorescence 

microscopy and immuno-detection techniques. Third aim was to investigate in vivo self-

assembly mechanism of SL-eGFP constucts in S. cerevisiae cells during mitosis and meiosis. 

In parallel, possible association of in vivo SL-eGFP structures with the cellular components 

was of interest. The next issue was to determine if in vivo SL-eGFP assemblies could be 

obtained stably outside the cells (in situ). Following the in situ extraction analyses, it was 

aimed to investigate monomerization, subsequent recrystallization and metallization of SL-

eGFP fusion proteins and the factors affecting the underlying recrystallization process.  
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I. Introduction 

S-layers (SLs) are composed of protein (or glycoprotein) subunits covering the outermost 

layer of many Gram-negative, Gram-positive bacteria and archaea forming planar self-

assembly structures [1]. These two-dimensional arrays occupy up to 20% of total protein 

structure of the cell [2]. Morphological, structural and genetic studies showed that SLs are the 

simplest form of membranes evolved [3]. During all stages of cell cycle, they assemble into 

highly porous, regularly patterned structures onto the cell surface [4]. They can be 

recrystallized into monomolecular arrays in suspensions, on solid surfaces e.g. silicon, glass, 

carbon and synthetic polymers or on lipid films [5]. Regularly sized pores having similar 

morphologies make them appealing for biotechnological applications such as molecular 

filtration processes [6]. Presence of functional groups on protein lattices in well-defined 

positions and orientations reveal their immobilization potential for functional molecules [7]. 

Due to these characteristic features, SLs have become appealing for biotechnology, 

biomimetics and nanotechnology. In this section, structure, synthesis, function, applications 

of SL proteins, characteristics of specific SL proteins investigated in this study were 

presented with introduction to yeast S. cerevisiae as a model organism.  

1.1. Morphological Stucture and Occurence of SL Proteins 

SLs were reported to be found in many bacteria and archaea. Interaction of SL monomeric 

subunits with the underlying cellular envelope during the reassembly process can be grouped 

into three groups (Fig. 1) depending on the type of species owning SLs [9]. These subunits 

interact with each other and with the underlying cell surface by relatively weak forces such as 

hydrogen-bonding, salt-bridging, ionic bonding or hydrophobic interactions. These non-

covalent weak interactions make SL proteins easy to isolate by hydrogen-bond breaking 

agents, chelating chemicals or by changing the pH of the environment [10]. SLs of various 

microorganisms have been identified by electron microscopy through freeze etching (Fig. 

2a.). Scanning force microscopy and electron crystallography enabled scientists to identify 

the three-dimensional structure of SL arrays (Fig. 2b) [11]. These arrays are composed of 

identical protein or glycoprotein subunits self-assembling in hexagonal (p6), tetragonal (p4), 

trimeric (p3) or oblique (p1, p2) symmetrical structures (Fig. 3) [12]. The center to center 

distance between each subunit ranges from 2.5 nm to 35 nm and the thickness of the array 

varies in bacteria between 5 nm and 25 nm, and in archaea up to 70 nm [13]. SL protein 
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networks have highly porous surfaces (up to 70%) with pores of generally identical size (2-8 

nm range) and morphology (Fig. 4) [14]. 

 

 
 
Figure 1. Cell envelope structures of three types of prokaryotes possessing SLs. (a) Archaea with SLs 
bound to the cell membrane. (b) Gram-negative bacteria with SLs associated directly with 
lipopolysaccharides of the outer membrane. (c) Gram-positive bacteria with SLs interacting with the 
cell wall composed of peptidoglycan (modified from [11]). 
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Figure 2. SL characterization by electron microscopy and modeling. a) Freeze-etched electron 
microscope image of Thermoanaerobacter thermohydrosulfuricus surface layer. F, flagellum; Scale 
bar = 100 nm [15] b) Structural scheme of one SL unit (Tetrabrachion) of Staphylothermus marinus 
(modified from [16]) 
 

 

 
 
Figure 3. Different SL lattice symmetry types. The well ordered SL lattices show either oblique (p1, 
p2), square (p4), or hexagonal symmetry (p3, p6) consisting of one, two, three, four, or six identical 
subunits (modified from [3]). 
 

 

(a) (b) 
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Figure 4. Three-dimensional model of highly porous Bacillus stearothermophilus (B. 
stearothermophilus) NRS 2004/3a/V2 SL (outer face). The thickness of SL is about 8 nm and its 
center-to-center spacing between subunits is 13.5 nm. The protein network exhibits one square-
shaped, two elongated, and four small pores per morphological unit. Bar = 100 nm  [11] 
 

1.2. Chemical Structure, Synthesis and Genetics 

Highly purified SLs from archaea and bacteria show a common overall chemical composition 

regardless of the origin of the microorganism. According to these findings, they are 

consisting of 40-60% of hydrophobic amino acids (aa). They are generally weakly acidic 

proteins (pI~4-6, except for Methanothermus fervidus (pI 8.4) and lactobacilli (pI>9.5)) 

composed of protein or glycoprotein subunits. They possess nearly 15% of glutamic and 

aspartic acid, about 10% lysine and 40-60% hydrophobic aa. Mostly all SL proteins are 

composed of 20% α-helices and 40% β- sheets [11]. 

 

Under the scope of synthesis and secretion of SLs, the first complete pathway was identified 

by Noonan et al. [17]. They have published a specific pathway for SL secretion in Aeromonas 

salmonicida across the outer membrane which is also the general secretion system for other 

proteins like hemolysin and proteases.  

 

Genetical studies revealed that the SLs originating from different phylogenetic branches did 

not show any sequence identities. It has been found that sequential homologies depend on 

evolutionary backgrounds. For some species, signal peptide encoding sequences are 

conserved. SbsA and SbsC surface layer proteins of two B. stearothermophilus wild-type 

strains (PV72/p6 and ATCC 12980) are highly identitical for the 270 N-terminal aa, but 

weakly identical (<25%) for the remaining sequences. However for some other evolutionary 

related species, these findings are not applicable because the sequential identities can not be 
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related only to evolutionary relationships but other factors like growth conditions or 

environmental pressures. It has been shown that, when the N- and C-terminal truncated forms 

of SL encoding genes are expressed in various host organisms, they are still capable of self-

assembling on the cell envelope [11, 18]. 
 

Glycosylation is a common post-translational modification observed in SLs from archaea, 

Gram-positive and Gram-negative bacteria (Fig. 5). Until now, at least 40 different glycan 

structures of glycosylated SLs have been characterized. In archaea, SL glycan chains are 

composed of short oligosaccharides whereas in bacteria, they are mostly linear or branched 

homo-/heterosaccharides composed of 20-50 repeating units. O-glycosidic linkages have 

been identified in both, archaeal and bacterial glycosylated SLs, while N-glycosidic linkages 

are specific to archaea [15]. Characterization of bacterial and archaeal glycosylated SL 

proteins is summarized in Table 1. 

 

            
 
Figure 5. Schematic representation of 30-40 nm glycan chains projected from the cell surface of 
Geobacillus stearothermophilus NRS 2004/3a [19]  
 
 
 
 
 
 



Introduction 

 14

Table 1. Characteristics of bacterial and archaeal glycosylated SL proteins (modified from 

[15]) 

 
Aspect Bacteria Archaea 

Glycan type O-glycan N-glycan, O-glycan 

Region of linkages β-Glc to Tyr 

β-Gal to Tyr/Ser 

β-GalNAc to Tyr/Ser 

α-Glc to Ser 

β-Glc to Asn 

GalNac to Asn 

Rha to Asn 

Gal to Thr 

Glycan composition Heteropolysaccharides  

of 20-50 repeating units 

Short heteropolysaccharides up 

to 10 sugars 

Repeating unit 2-6 sugars Not discovered 

Sugar components 

 

 

 

 

 

 

β-D-Glcp 

α-D-Galp, β-D-Galp, β-D-Galf 

α-D-Manp 

α-D-Rhap, α-L-Rhap 

α-D-GlcpNAc 

α-D-GalpNAc, β-D-GalpNAc, 

etc. 

α-D-Glcp, β-D-Glcp 

Galp, Galf 

α-D-Manp 

D-GlcpNAc, etc. 

Glycosylation 

sequences 

YD, YPV, YNP, YSPA, etc. NXS/T 

 

 

1.3. Functions  
In nature, SLs function as cell shape and rigidity determining tools (especially in Gram-

negative archaea where SLs are directly bound to the cytoplasmic membrane) and protective 

coats against environmental stresses e.g. high temperature, low pH, high ionic strength, etc. 

[20]. It has been reported that SLs can also act as molecular sieves and ion traps. For 

example, SL from B. coagulans E38-66 was reported to act as a neutral charged molecular 

sieve allowing molecules up to 17 kDa to pass [21, 22]. In some Gram-negative bacteria, SLs 

can act as a barrier against bacterial parasites [23]. They can contribute to the virulence of 

some pathogens [9, 24] or can function as adhesion sites for cell- associated exoenzymes, e.g. 

exoamylase from G. stearothermophilus [25, 26] and as crystallization nuclei for 
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biomineralization. Synechococcus sp. strain GL24 uses its SL structure for the 

biomineralization of gypsum and calcite [27, 28] 

1.4. Self-assembly 

An SL of a moderate size, rod shaped prokaryote is composed of nearly 5x105 subunits. Since 

the cell generation time is about 20-30 min, for this cell to cover the whole cell envelope with 

the SL, at least 500 copies of monomers have to be synthesized and located per second. 

Microscopic techniques enable scientist to understand the dynamics behind the SL assembly 

process both in vivo [29] and in vitro [14]. 

 

In vivo self-assembly observations conducted by labeling the SL with colloidal gold or 

fluorescent markers showed the way of extension during the cell growth. It was shown that in 

Gram-negative and Gram-positive bacteria SL growth depends on the growth of underlying 

cell envelope layer and the lattice growth can start at specific regions or random domains. 

Moreover, dislocations and disclinations were observed in freeze-etched intact bacteria 

preparations. It has been theoretically predicted that these areas of dislocations can function 

as the domains for new subunits to be translocated into the array or as initiation sites for cell 

division [11, 30]. Recently it was demonstrated that there exists a second layer underlying the 

SL taking role in promoting the 2D self-assembly process [31].   

 

There are various ways of disintegrating the SL monomers from the cellular envelope. Since 

monomeric subunits interact with each other and with the underlying cell surface by 

relatively weak forces such as hydrogen-bonding, salt-bridging, ionic bonding or some 

hydrophobic interactions, these non-covalent weak interactions make them easy to be isolated 

by high concentrations of chaotropic agents such as urea and guanidine hydrochloride, by 

using metal chelating chemicals such as ethylenediaminetetraacetic acid (EDTA) and 

ethylenebis (oxyethylenenitrilo) tetraacetic acid (EGTA) or by changing the pH of the 

environment [10]. After the isolation of monomers, upon the removal of disintegrating agents 

from the environment by means of dialysis, subunits can be recrystallized into regular arrays 

on solid substrates e.g. silicon, noble metals, glass, carbon and synthetic polymers, at air-

water intefaces and on lipid films [11, 5, 3]. These self-assembly products can be formed as 

flat sheets, open ended cylinders or spheres (Fig. 6). The rate and extent of self-assembly 

process depends on various factors such as: temperature, ionic strength, protein concentration 

[11].  
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 Figure 6. In-vitro reassembly of isolated SL subunits on various substrates [3] 

1.5. Applications 

Self-assembly abilities into monomolecular arrays in suspensions, on solid surfaces or lipid 

films enable SL proteins to be recrystallized on silicon, glass, carbon and synthetic polymers. 

SLs possess regularly sized pores having similar morphologies. Presence of functional groups 

on protein lattices in well-defined positions and orientations reveal their immobilization 

potential for functional molecules. Due to these characteristic features, SLs have become 

appealing for biotechnology, biomimetics and nanotechnology [5, 6, 7, 11, 8]. 

1.5.1. Biomimetic and Biotechnological Applications 
Production of isoporous ultrafiltration membranes with good molecular sieving and 

antifouling characteristics, production of matrices for the immobilization of many molecules 

like enzymes, antibodies, biotin, avidin, etc. (used in amperometric or optical biosensors), 

production of vaccine and vaccine derivatives and supporting structures for the production of 

functional lipid membranes are the most remarkable biotechnological and biomimetic 

applications of SLs [11]. 
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1.5.1.1. Isoporous Ultrafiltration Membranes 
Due to the presence of highly porous structure of SLs having mostly identical size and 

morphology, SL lattices are applicable in production of ultrafiltration membranes (SUMs) 

with good molecular sieving and antifouling characteristics [8]. It has been reported on 

molecular sieving capacity of B. stearothermophilus SL lattices [6]. It was shown that the 

examined Bacillus strains are capable of transporting molecules up to the molecular weights 

of 30,000 Da. SUMs can be obtained by crosslinking the SL self-assembly products or cell 

envelope fragments containing SLs on nylon microfiltration membranes with glutaraldehyde 

(Fig. 7) [32]. 

 

One can obtain SUMs with neutral, negative or positive charges and with different 

hydrophobicities by manipulating the free carboxyl groups of aa located on the surface of SLs 

or inside the pores that can allow the scientists to study the passage of different molecules 

through the ultrafiltration membranes and to conduct flux analyses [48]. SUMs are also 

model systems for protein adsorption and membrane fouling studies [33]. Recently, the 

electrochemical properties of a SUM constructed with SbpA (SL protein of Lysinibacillus 

sphaericus) has been determined giving hints about the potential usage of such supports for 

the production of membrane protein based systems such as biosensors [34]. Sotiropoulou et 

al. [35] evaluated the gating properties of nanoporous membranes (pore size in the range of 

2-7 nm) obtained by recrystallization of isolated SL monomers of Deinococcus radiodurans 

on silicon substrates. They showed the presence of ionic currents gating through the pores of 

synthetic membrane.  
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Figure 7. Schematic representation of  SL ultrafiltration membranes (SUMs) (modified from [11]) 
 

1.5.1.2. Immobilization Matrices 
Due to the presence of regularly located free carboxyl groups on SL lattices, SLs have been 

appealing as matrices for the immobilization of functional groups in a well-defined fashion 

(Fig. 7).  

 

It has been reported on an affinity matrix prepared from Clostridium thermohydrosulfuricum 

L111-69 SL lattice (hexagonal symmetry) by crosslinking the SL with glutaraldehyde to a 

membrane which was further used in affinity cross-flow filtration investigations [36]. In this 

study, free carboxyl groups of acidic aa were functionalized with carbodiimide in order to 

immobilize Protein A molecules onto the SL as a monolayer. Protein A is a ligand which can 

recognize and specifically bind to most of the mammalian antibodies [14]. Then, the obtained 

affinity micro-particles were investigated in terms of their IgG (immunoglobulin G) binding 

capacities. It has been found that even after eluting the bound IgG at very low pH values (1.5-

2), after centrifugation at very high forces (40,000xg), after applying highly concentrated salt 

or chaotropic agents, organic solvents and different temperatures (-20o to 80oC), there was 

not any decrease in performance of the affinity matrix to IgG molecules after regeneration 

with glycine-NaOH. A schematic representation of affinity micro particles (AMPs) can be 

seen in Fig. 8. 
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Figure 8. Scheme of affinity micro particles (AMPs) used for isolating IgG [14].   

 

As densely packed monolayers, many enzymes have been immobilized on SL matrices for 

developing new biosensors. For example, invertase (270 kDa) has been linked to a 

hexagonally ordered SL lattice (2-3 enzyme molecules per each SL unit) with a retained 

enzymatic activity of 70%.  Beta-glucosidase (66 kDa) was linked to an SL lattice via spacers 

(4-amino butyric acid or 6-amino caproic acid) and an activity of 160% was reached. A 

glucose sensor was developed by immobilizing an oxygen sensitive fluorescent dye on the SL 

which is linked to glucose oxidase enzyme molecules. A decrease in oxygen concentration 

due to the enzymatic reaction could be detected via the fluorescent dye, thus a measurable 

signal was produced [14]. 

 

Tschiggerl et al. [37] have constructed fusion proteins of SLs of B. sphaericus CCM 2177 

(SbpA) and Geobacillus stearothermophilus PV72/p2 (SbsB) with F1 peptide (mimicking 

immunodominant epitope of Epstein–Barr virus (EBV)). The recombinant proteins were 

expressed in Escherichia (E.) coli and the SL chimeric proteins were able to self-assemble by 

localizing the F1 residue on the outer surface of the matrix making it possible to immobilize 

the corresponding antibodies to F1 proteins.  

1.5.1.3. Vaccine Technology 
SL (glyco)proteins have been used as carriers/adjuvants in vaccination and immunotherapy 

with both native and chemically or genetically modified forms. Since the conventional 

carriers such as tetanus or diphteria toxoids are obtained as monomers in solutions or as 

aggregated structures on aluminum salts, it is difficult to obtain a regular, well-defined 

reproducible immobilization of ligands on the carrier. At this point, SLs provide the 

advantage of self-assembly on solid supports as well as on liposomes or between air-water 
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interfaces having identical well-defined subunits possessing functional groups that can bind 

proteins or carbohydrate ligands at identical positions and orientations [14]. 

 

SLs were first studied as  potential carrier/adjuvants for cancer vaccines by Smith et al. [38] . 

In convential vaccines, an external adjuvant should be administered with the conjugate 

antigens to induce strong immune responses. Unfortunately there are just a few licensed 

adjuvants available for humans. Smith et al. [38] showed that the use of SLs as carriers is an 

excellent method to immunopotentiate the T-cell responses to small oligosaccharide haptens 

without the need of using any adjuvant. It has been concluded that SLs can be useful tools in 

mediating carrier/adjuvants for cancer immunotherapy by developing SL-carbohydrate based 

tumor antigens.  

 

Moreover, SLs were used to study the immunotherapy of type I allergies by conjugating them 

with Betv1 which is known to be the major allergen of birch pollen [14]. Hollmann et al. [39] 

have isolated the SL proteins from lactobacilli and covered liposomes with them in order to 

conduct a stability analysis for a potential usage of coated liposomes as oral vaccine vesicles. 

Independent of the glycosylation of SL coat, liposomes covered with SLs showed an 

increased stability against pancreatic enzymes, salts, pH changes and thermal shocks. 

Additionally, effect of self-assembly of the fusion rSbpA-Betv1 protein on reduced 

allergenicity was studied showing no specific relationship or influence of self-assembly on 

allergic response [40].  

1.5.1.4. Functional Lipid Membranes 
Construction of functional biological membranes has been always in focus due to the fact that 

a large number of biological processes are membrane dependent. Investigations have been 

conducted generally with artificial planar lipid bilayers and liposomes until the need of 

obtaining the same system not fragile but robust and at the same time functional [11]. The 

idea was to mimic the archaeal cell envelope (Fig. 1) by using SLs. In this model, artificial 

lipid molecules are replacing the natural lipids of cell membrane and SLs from different 

microorganisms such as Bacillaceae are attached to one or both sides of the lipid membrane 

[4]. The application range of such layers (so-called “semifluid” membranes) (Fig. 9) has been 

broadened up to diagnostics, biosensor developments and physiology by the possibility of 

applying Langmuir- Blodgett (LB) techniques to such membranes [11, 41]. Voltage clamp 
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studies revealed that the SL support does not interfere with the function of the lipid 

membrane [42].  

 

    
 
Figure 8. Scheme of a “semifluid” membrane consisting of an SL supporting a phospholipid bilayer 
or tetraetherlipid monolayer Langmuir film (modified from [11]) 
 

SL monomers have been also recrystallized on liposomes which are vesicles made of lipids 

(Fig. 10). Liposomes coated with SLs mimic the archeal cells. SLs covering the liposomes 

can be crosslinked and can become accesible for covalent attachment of molecules. This 

enables them to entrap molecules which make them an alternative tool in gene therapy, drug-

targetting and drug delivery studies [7].  

 

Ilk et al. [43] have expressed and isolated a functional chimeric SL–enhanced green 

fluorescent protein (SL-eGFP) and covered liposomes with this recombinant protein in order 

to observe the uptake of SL-eGFP coated liposomes by eukaryotic cells. Hollmann et al. [39] 

have isolated the SL proteins from lactobacilli and covered liposomes with them in order to 

conduct a stability analysis for a potential usage of coted liposomes in drug-delivery as an 

oral vaccine vesicle. Liposomes covered with SLs showed a remarkable stability against 

pancreatic enzymes, salts, pH changes and thermal shocks. 
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Figure 10. Schematic representation of a liposome coated with SL proteins, with molecules 
immobilized on SL proteins or with genetically engineered SL proteins with functional domains 
(modified from [11]) 
 

1.5.2. Nanotechnological Applications 
As nanotechnological applications, native or tailored SL proteins can be recrystallized on 

various substrates such as silicon and gallium arsenide (microelectronical applications  and 

integrated biosensors), glass (electro-optical and optical sensors) and noble metals 

(amperometric biosensor ultrathin electrodes) [5, 11]. Patterning of  SLs recrystallized on 

solid surfaces is of importance to obtain ultrathin high-resolution resists [45]. SLs can also be 

used as templates for the production of regularly distributed nanoparticals (metallic i.e. 

cadmium, platinum, gold, iron, palladium, titanium, etc. or semiconducting) [46, 32]. 

1.5.2.1. Coupling of Inorganic Molecules 

Due to the presence of regularly located free carboxyl groups on SL lattices, SLs have been 

appealing as matrices for the immobilization of functional groups in a well-defined fashion. 

A glucose sensor was developed by immobilizing an oxygen sensitive fluorescent dye on the 

SL in close vicinity to the glucose oxidase sensing layer. A decrease in oxygen concentration 

resulted in a measurable signal via the fluorescent dye [14]. Scheicher et al. [47] have 

developed optical oxygen sensors based on covalent immobilization of an oxygen sensitive Pt 

(II) porphyrin dye on SL matrices. This is another example that documents the potential of 

SL proteins as immobilization matrices for (bio-) sensor technology.  
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1.5.2.2. Formation of Metal Clusters 

Inspired by the biomineralization potential of bacteria in nature (e.g. Synechococcus sp. strain 

GL24 for the biomineralization of gypsum and calcite [27]), the idea of depositing metallic 

particles in a well defined and controlled fashion has appeared. This would allow the 

formation of metal nanoparticle arrays with identical size and morphology on SL supported 

surfaces. The approach is first to self-assemble SL monomers on solid surfaces such as Si, 

then to deposit metal nanoparticles on the SL surface by chemical reduction of metal salts 

[49]. SLs have been used in nano-scale lithography as patterning templates for the formation 

of highly ordered and identical metal nanoparticle arrays that can be applied in downscaling 

of many components, e.g. logic and memory devices, in nanoelectronics. 

 

One of the earliest studies reporting a method for nano-scale molecular lithography coupling 

SLs with metallic coatings was published by Douglas et al. [50]. SL of S. acidocaldarius with 

trimeric lattice symmetry (with a lattice constant of 22 nm) was recrystallized on a carbon 

substrate, coated with (Ta/W) metal particles by evaporation, and processed by milling to 

generate a 1 nm thick metal film with holes of the same periodicity as the SL template. 

Mertig et al. [49] have utilized SL of Sporosarcina (S.) ureae with tetragonal lattice 

symmetry and 13.2 nm lattice spacing as a protein template to chemically deposit platinum 

clusters leading to the formation of highly ordered Pt arrays. The unit cell of resulting metal 

clusters has a size of 13.2 nm x 13.2 nm. It was stated that not only the localization and size 

of the Pt particles, but also the metal lattice growth is determined by the underlying SL 

protein template. 

 

Besides the chemical deposition of metal nanoparticles or ions on SLs, one can also apply 

electrodeposition. Allred et al. [51] reported isolation and recrystallization of SLs from 

different microorganisms on platinum coated gold surfaces, and subsequent electrodeposition 

of cuprous oxide as a step towards electrochemical nano-device fabrication. Recently, Wahl 

et al. [72] have investigated the electron-beam induced formation of nanoparticle arrays of 

platinum (Pt) and palladium (Pd) on the SL of B. sphaericus NCTC 9602. They obtained 

regular arrays of metal nanoparticles placed inside the pores of SL sheets. 

 

Genetic engineering provides a promising tool to generate tailored functional SLs that 

maintain their ability to self-assemble and have some novel functions due to fused tags. 

Recently, Liu et al. [52] expressed a truncated version of SbsC protein from G. 
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stearothermophilus (exhibiting a hexagonal lattice symmetry and a 20 nm unit cell 

dimension) in E. coli. Recrystallization of the purified protein on Si wafers led to a 

reassembled 2D SL lattice with identical pore sizes of 9 nm. Metal oxide based materials, e.g. 

hafnium oxide, were first deposited on octadecyltrichlorosilane (ODTS) modified SL by area-

specific atomic layer deposition and after the removal of SL proteins; periodic nano hafnium 

oxide patterns (~9 nm) were fabricated. Therefore SLs have the potential as future templates 

of sub-10 nm patterning that can be applied in downscaling of logic and memory devices in 

nanoelectronics. Badelt-Lichtblau et al. [53] have expressed, purified and recrystallized a 

chimeric protein composed of truncated versions of SbpA fused with a short affinity tag 

Strep-tag II and a cysteine residue. The tags and truncations had no effect on reassembly of 

SL. This self-assembly product exposed the free cysteine residue on the outer surface at 

defined and regular positions making it accessible to gold nanoparticles, thus providing a 

perfect template for patterning. 

1.6. Expression of SL Proteins in Eukaryotic Systems 
Although heterologous expression of SL proteins has been widely studied in various 

prokaryotic host cells such as E. coli [67] and Bacillus species [94], there are only a few 

publications reported on SL expression in eukaryotic systems such as yeast and human cell 

lines [29, 57]. In this section, I wanted to concentrate on yeast S. cerevisiae as a eukaryotic 

model system for heterologous protein expression and on specific SL proteins used in this 

study.  

1.6.1. Saccharomyces cerevisiae as a Host Organism in Protein Expression  
Yeasts are the ideal tools in experimental molecular biology. They were the first eukaryotic 

organisms whose whole genome was fully investigated and explored. The yeast genome 

project was conducted between 1992 and 1996, and the sequence of all 16 chromosomes was 

determined. Since many eukaryotic cellular functions are preserved in yeasts, they are the 

model organisms for investigating the eukaryotic cell structures and events. Since they are 

unicellular, they can be grown on simple media with defined composition in a controllable 

manner and since they can easily be manipulated genetically, yeasts are one of the most 

popular host organisms used in genomic researches and protein expression studies [54].  

The yeast S. cerevisiae is the most extensively investigated eukaryote under cellular, 

molecular and genetic aspects. S. cerevisiae is a remarkable tool in large-scale production of 
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foreign proteins for medical, experimental and technological purposes. Unlike E. coli cells, 

which have toxic cell wall components and mammalian cells that can contain viral or 

oncogenic DNA, S. cerevisiae cells are generally recognized as safe (GRAS)  and easy to 

handle since they can grow to high densities in short time on simple media [55]. Until now 

many intracellular and extracellular proteins of different organisms have been expressed and 

produced in large-scales in S. cerevisiae [56]. Some examples of foreign proteins being 

expressed in the host S. cerevisiae are shown in Table 2.  

 
Table 2. Some proteins from different organisms expressed in yeast S. cerevisiae  

 
Foreign Protein Source Organism Observation in Yeast Reference

mSbsC-eGFP 

(bacterial SL protein) 

Bacillus  Expression resulted in 

formation of tube-like 

network structures. 

[57] 

Cathepsin S (enzyme) Human Active forms of enzyme 

have been expressed and 

purified. 

[58] 

SspA 

(bacterial virulence protein) 

Salmonella SspA interacts with  yeast 

actin.  

[59] 

Cre (recombinase) 

 

Coliphage  Expressed foreign 

recombinase was 

functional. 

[60] 

 

L1 (major capsid protein) 

 

Papillomavirus Capsid proteins self-

assembled into virus-like 

structures in vivo. 

[61] 

 

CP (coat protein) 

 

Tobacco mosaic virus The coat proteins self-

assembled into rod-like 

structures in vivo. 

[62] 

 

 

S. cerevisiae cells can be found in three categories according to their mating types: MAT a 

(haploid), MAT a (haploid) and MAT a/a (diploid). Each haploid cell type can go into the 

mitotic cell cycle or budding yielding haploid daughter cells. Cells with different mating 

types can mate or fuse forming the diploid cells. Each diploid cell can go through meiosis and 
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sporulation yielding asci composed of 4 haploid spores [63]. The schematic representation of 

S. cerevisiae life cycle can be seen in Fig. 11. 

 

 
 

Figure 11. S. cerevisiae cell cycle (http://en.wikipedia.org/wiki/File:Yeast_lifecycle.svg)  
 

The cytoskeleton of S. cerevisiae cells consists of two types of elements: tubulin-based 

microtubules (α-tubulin, β- tubulin and γ- tubulin) and actin-based microfilaments (Fig. 12). 

Actin networking is necessary for the cell polarization and transportation of the cell 

compartments during the cell cycle, while microtubules take role in forming the growth axis 

and positioning the mitochondria, Golgi apparatus and nucleus [64]. 
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Figure 12. S. cerevisiae cytoskeletal elements. a) Microtubule localization in S. cerevisiae 
[65] b) Actin cytoskeleton dynamics during the cell cycle [66] (Detailed explanations of 
images can be found in indicated citations.) 
 

1.6.2. SL Proteins Investigated in This Study 
In this study we investigated the heterologous expression of three different SL proteins in 

yeast S. cerevisiae BY4741. SLs of interest were SbsC of B. stearothermophilus ATTC 

12980 [69], s13240 of B. stearothermophilus DSM 13240 [8] and SslA of S. ureae ATCC 

13881 [71] (Fig. 13). 

 

B. stearothermophilus is an aerobic, endospore forming Gram-positive bacteria. Until now, 

SLs have been identified in 40 Bacillus species, but only a few of them have been genetically 

characterized, e.g. SbsA of B. stearothermophilus PV72/p6, SbsB of B. stearothermophilus 

PV72/p2 and SbsC of B. stearothermophilus ATCC 12980 [67]. SbsC possesses oblique 

lattice symmetry and is composed of 1099 aa with an N-terminal signal peptide of 30 aa. 

SbsC is a non-glycosylated polypeptide under optimal cell cultivation temperatures (55°C) 

[68]. It has been shown that the N-terminal region (aa 31-257), which is responsible for cell 

wall anchoring, and the C-terminal region (aa 920-1099) of this 112 kDa protein are not 

necessary for the oblique lattice structure formation [10]. S13240 is the SL protein of B. 

stearothermophilus DSM 13240. 113 kDa S13240 protein is composed of 1069 aa with a 

signal peptide of 30 aa. S13240 shows an oblique symmetrical structure like SbsC. It has 

been demonstrated that the two SLs have 95.6% homology for 270 aa of the N-terminal 

region [69]. Native and genetically engineered SLs have been studied for possible 

A (a) (b) 
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applications in the field of biotechnology. For example, they were used to investigate 

immunotherapy of type I allergies by conjugating them with Bet v1 which is known to be the 

major allergen of birch pollen. It has been shown that a fusion construct of recombinant SbsC 

and Bet v1 (rSbsC-Bet v 1) displayed some important features making it an ideal allergy 

vaccine: less IgE binding and less mediator release, immune stimulatory effects, immune 

modulatory effects and the convincing constant ratio between allergen and adjuvant [40]. 

Blecha [69] has expressed an SL-eGFP fusion protein (SbsC-eGFP) in the yeast S. cerevisiae 

and in human HeLa cells that self-assemble into green fluorescent cylindrical tubular 

structures both in vitro and in vivo. He also investigated the mature and genetically 

engineered forms of S13240. The protein was expressed in E. coli and in the yeast S. 

cerevisiae. In vitro recrystallization studies showed again tube-like structures. This findings 

led us to investigate the large-scale production of such tubes and possible ways of metalizing 

them in order to get conducting materials for bionanotechnological applications. Recently, 

Liu et al. [52] expressed a truncated version of SbsC in E. coli. Recrystallization of the 

purified protein on Si wafers resulted in a reassembled 2D SL lattice with identical pore sizes 

of 9 nm. Metal oxide based materials were first deposited on the recrystallized SL leading to 

the formation of periodic nanoparticles of ~9 nm. 

 

S. ureae is a Gram-positive bacterium intimately related to B. pastereurii and B. sphaericus 

having an SL protein called SslA which has a tetragonal symmetry. The three-dimensional 

structure of the regular outermost layer of S. ureae was first investigated in 1986 [70]. 

According to that study, SslA has a tetragonal symmetry with a lattice constant of 12.9 nm 

and a minimum thickness of 6.6 nm. The latest findings showed that this SL protein has a 

lattice spacing of 13.2 nm and a pore diameter of 2 nm [49]. The sslA gene structure has 

recently been explored, and it was found that the encoded 116 kDa protein is composed of 

1097 aa with a signal peptide of 30 aa [44]. Mertig et al. [49] have utilized SslA as a protein 

template to chemically deposit platinum clusters. They observed the formation of highly 

ordered Pt arrays. The resulting metal arrays showed lattices with a unit cell size of 13.2 nm x 

13.2 nm. They concluded that the localization, size and the metal lattice growth of Pt particles 

were determined by the underlying SslA protein template.  
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Figure 13. SL proteins investigated in this study. Red, blue, green and yellow areas stand for signal 
peptides, cell wall binding sites, domains required for self-assembly and domains not necessary for 
self-assembly respectively. 
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II. Materials and Methods 
 

2.1. Materials 
Equipments, kits and similar products, chemicals, buffer and solutions, media, cell strains, 

primers and plasmids used in this study are listed in this section. 

 

2.1.1. Equipments 
     Equipment Model Company 

Agarose gel electrophoresis 

System 

B2/B1A                       

 

PeqLab 

Blotter  - PeqLab 

Centrifuge AvantiTM J25 Beckman-Coulter 

Centrifuge  Biofuge fresco Heraeus 

Centrifuge  Biofuge pico  Heraeus 

Centrifuge  5417 R Eppendorf 

Centrifuge  Sigma 3K 30 Sigma 

DNA/protein gel chambers - PeqLab / Hoefer 

Electroporation device Gene pulser II Bio-Rad 

Fluorostar microplate reader Fluorostar Omega BMG Labtech 

Fluorescence microscope Axio imager Zeiss 

Fluorescence microscope BZ-8100E Keyence 

Fluorescence microscope 

4D Imaging System 

Axiowert 200M Zeiss 

Heating blocks - Eppendorf / Kleinfeld 

Herring Sperm DNA - Invitrogen 

Incubators - WTB Binder / Heraeus 

Laser scanning confocal 

microscope  

DM 6000B Leica 

Magnet steering system Combimag RCT IKA 

Nephelometer Nephelostar galaxy BMG Labtech 

pH meter 766 Calimatic Knick 

Power supplies - Bio-Rad / Pharmacia 
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Biotech 

Scanning electron 

microscope 

LEO DSM 982 Gemini 

Spectrophotometer Ultrospec 3000 Pharmacia Biotech 

Thermocycler Cyclone 96 PeqLab 

Thermocycler Primus MWG-Biotech 

Ultracentrifuge OptimaTM MAX Beckman-Coulter 

Vortexers -  IKA 

 

2.1.2. Kits and Similar Products 
Product Company 

NucleoBond
® 

plasmid purification Macherey-Nagel 

Invisorb® fragment cleanup kit Invitek 

Dc protein assay Bio-Rad 

ECLPlus western blotting detection system Amersham Biosciences 

Immobilon-P PVDF transfer membrane Amersham Biosciences 

96-well plates Nunc 

96-well plates with transparent bottom Brand 

Easybreathe membrane Roth 

VS dialysis membrane  Millipore 

 

2.1.3. Chemicals 
Chemical Company 

Acetic acid AppliChem 

Acetone Prolabo 

Acrylamide / Bisacrylamide Sigma 

Adenine  Serva 

4-(2-aminoethyl)-benzenesulfonyl fluoride (AEBSF) AppliChem 

Agar Formedium 

Agarose BioZym 

Ammonium persulfate (APS) Merck 

Ampicillin (Amp) AppliChem 
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Anti-GFP antibody Roche 

Anti-mouse antibody GE Healthcare 

BODIPY 650/665 phalloidin Molecular Probes 

Boric acid (H3BO3) Roth 

Bovine serum albumin (BSA) Sigma 

Bromophenol blue Serva 

Calcium chloride (CaCl2)  Roth 

4, 6-diamidino-2-phenylindole dihydrochloride (DAPI) AppliChem 

dNTPs NEB 

Dithiothreitol (DTT) AppliChem 

Ethanol Merck 

Ethidium bromide (EB) Sigma 

Ethylendiamine-tetraacetic acid (EDTA) Roth 

Formaldehyde Roth 

Glycerol Roth 

Glycine Roth 

Glucose Roth 

Guanidine hydrochloride (GuHCl)  Roth 

Herring sperm DNA Invitrogen 

Isopropanol Roth 

L-Histidine HCl Roth 

Lithium acetate (LiAc) Roth 

L-Leucine Roth 

L-Lysine HCl Roth 

L-Methionine Roth 

L-Tryptophan Roth 

Methanol  Fisher Chemicals 

Magnesium chloride-anhydrous (MgCl2.6H20) AppliChem 

Magnesium sulphate-anhydrous (MgSO4.7H20) Roth 

N, N, N', N'-tetramethylethylenediamine (TEMED) AppliChem 

Peptone / Tryptone Formedium 

PEG 6000 Roth 

Potassium acetate (CH3COOK)(KOAc) Merck 
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Potassium chloride (KCl) Roth 

K2PtCl4 Aldrich 

Potassium dihydrogenphosphate (KH2PO4) Merck 

Protease inhibitor coctail Roche 

Skimmed milk powder  AppliChem 

Sodium azide (NaN3) Aldrich 

Sodium chloride (NaCl) Roth 

Sodium dodecyl sulphate (SDS) AppliChem 

Sodium carbonate (Na2CO3) Roth 

Sodium hydroxide (NaOH) AppliChem 

Sodium phosphate (NaHPO4) AppliChem 

Disodium hydrogen phosphate (Na2HPO4) AppliChem 

Sorbitol AppliChem 

Tris(hydroximethyl)aminometane (Tris) base AppliChem 

Triton X-100  Sigma 

Tween 20 Roth 

Uracil Calbiochem 

Yeast extract Formedium 

Yeast Nitrogen Base (YNB) Formedium 

 

2.1.4. Enzymes 
Enzyme Company 

Phusion DNA polymerase  Finnzymes 

Restriction enzymes NEB 

Ribonuclease (RNAse) A Macherey-Nagel 

T4 DNA ligase  Promega  

Zymolyase 20T (20,000 U/mg) Seikagaku Biobusiness 

Co  

 

2.1.5. Buffers and Solutions 
Buffer and solutions used in this study can be grouped in two parts: commercial and self-

made buffers and solution which were listed below. 
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2.1.5.1. Commercial Buffers and Stock Solutions 

Buffer Company 

DNA loading buffer 6X  Fermentas 

PBS  PAA 

Phusion HF buffer  Finnzymes 

Restriction enzyme buffers NEB 

T4 DNA ligase buffer 10X  Promega 

 

2.1.5.2. Self-made Buffers and Solutions 

Buffer/Solution Application Components 

TBE buffer (10x)  

 

Agarose gel 

electrophoresis 

Tris                       89 mM  

Boric acid              89 mM 

in EDTA               2 mM (pH 8.0) 

Tubing preperation 

buffer I 

Dialysis Na2CO3                 2% (w/v) 

in EDTA               1 mM (pH 8.0) 

Tubing preperation 

buffer II 

Dialysis EDTA                   1 mM (pH 8.0) 

 

Sorbitol solution In situ protein 

extraction 

Sorbitol                 1.2 M  

in Tris-HCl           10 mM  (pH 7.2) 

Spheroplastic buffer In situ protein 

extraction 

Zymolyase 20T    10 mg/ml 

                              in sorbitol solution 

Metallization buffer Metallization NaN3                               3 mM 

MgCl2                            1 mM 

in NaHPO4/ 

Na2HPO4               50 mM 

GTE solution Plasmid 

isolation 

Tris-HCl               1 M (pH 8.0) 

EDTA                   0.5 M 

Glucose                 40% (w/v) 
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KOAc solution Plasmid 

isolation 

KOAc                   60 ml (5 M) 

Glacial    

acetic acid             11.5 ml 

dH2O                     28.5 ml  

Solution I Plasmid 

isolation 

NaOH                   0.2 M 

SDS                       0.1% (w/v) 

Separating gel 
(12%)   
 

SDS-PAGE Acrylamide          12 % (w/v) 

Bisacrylamide      0.1% 

SDS                      0.1% (w/v) 

APS                      0.1% (w/v) 

TEMED               0.1% (v/v) 

Tris-HCl              125 mM (pH 6.8) 

Stacking gel (4%)   

  

SDS-PAGE 

 

Acrylamide          12% (w/v) 

Bisacrylamide       0.32% 

SDS                      0.1% (w/v) 

APS                      0.1% (w/v) 

TEMED               0.1% (v/v) 

Tris-HCl              375 mM (pH 8.8) 

Running buffer 

 

SDS-PAGE 

 

Tris-base              25 mM 

Glycine                192 mM 

SDS                      0.1% (w/v) 

Protein loading buffer 

(6x) 

SDS-PAGE 

 

Glycerol               30% (w/v) 

SDS                      10% (w/v) 

Bromophenol       0.1% (w/v) 

blue  

DTT                     600 mM 

                             (freshly added) 

Tris-HCl              300 mM(pH 6.8) 

LiAc solution Yeast 

transformation 

LiAc                     1 M 

PEG solution Yeast 

transformation 

PEG                     50% 
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TBS buffer (10X) 

 

Western blot  NaCl                    137 mM 

Tris-HCl              20 mM (pH 7,4) 

TBS-T buffer Western blot  1 x TBS 

Tween 20             0.1% (v/v) 

Transfer buffer Western blot Glycine                 192 mM 

Tris-base               25 mM 

Methanol               5% (v/v) 

SDS                       0.1% (w/v) 

Blocking solution 

 

Western blot 5% (w/v) Skimmed milk powder 

dissolved in TBS-T buffer 

 

2.1.6. Media  
Media Components 

LB (Luria-Bertani) broth/agar 

 

Yeast extract        0.5% (w/v) 

Peptone                1% (w/v) 

NaCl                     0.5% (w/v) 

(Agar)                  2.5% (w/v) 

YNB (Yeast Nitrogen Base) broth/agar 

 

 

 

 

 

Aminoacids (100x) 

YNB                    1.7 g/l 

(NH4)2SO4                 5 g/l 

Aminoacids          (1x)  

Glucose                2% (w/v) 

(Agar)                  2% (w/v) 

 

Adenine                2 g/l 

Histidine              10 g/l 

Leucine                10 g/l 

Lysine                  10 g/l 

Methionine          10 g/l 

Uracil                   2 g/l 

YPD (Yeast extract-Peptone-Dextrose) 

broth/agar 

Yeast extract        1% (w/v) 

Peptone                2% (w/v) 

Glucose                2% (w/v) 

(Agar)                  2% (w/v) 
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SOC (Super Optimal Broth) medium Yeast extract         0.5% (w/v) 

Peptone                 2.0% (w/v) 

NaCl                     10 mM 

CH3COOK           2.5 mM 

MgCl2 x 6H2O      10 mM 

MgSO4 x 7H2O    10 mM 

Glucose                 20 mM 

Sporulation medium KCH3COOH        10 g/l 

Ade                       0.01 g/l 

Lys                        0.01 g/l 

Leu                        0.01 g/l 

Trp                        0.01 g/l 

His                        0.01 g/l 

 

2.1.7. Strains 
Strain Genotype Source 

E. coli Top10 F- mcrA Δ(mrr-hsdRMS-mcrBC) 

Φ80lacZΔΜ15, ΔlacX74, deoR, recA1, 

araD319Δ (araA-leu), 7697galU, galK, 

rpsL(StrR), endA1, nupG 

INVITROGEN 

S. cerevisiae BY4741 MATa, his3Δ1, leu2Δ0, met15Δ0, ura3Δ0 EUROSCARF 

S. cerevisiae BY4742 MATα, his3Δ1, leu2Δ0, lys2Δ0, ura3Δ0 EUROSCARF 

S. cerevisiae W303 MATa, trp1::YFP-TUB1::TRP1, ura3-1, 

his3-11,15, leu2-3,112, ade2-1, can1-100 

[90] 

 

2.1.8. Primers  
Primer Sequence Restriction 

enzyme 

SslAforBamATG TATATATAGGATCCATGGCTGAATTCACAGAT

GTAAAAGA 

 

BamHI 

SslArevXho TATATATACTCGAGCGAACTAATAACTAATGC

ATTTGC 

XhoI 
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SslArevXhoArgTEV 

 

ATATATACTCGAGACCTTGAAAATAAAGGTTT

TCGCGTCGGCGTCGGCGTCGCGAACTAATAAC

TAATGCATTTGC 

XhoI 

SslArevXhoHisTEV 

 

ATATATACTCGAGACCTTGAAAATAAAGGTTT

TCGTGATGGTGATGGTGATGCGAACTAATAAC

TA ATGCATTTGC 

XhoI 

SslArevXhoLysTEV 

 

ATATATACTCGAGACCTTGAAAATAAAGGTTT

TCCTTTTTCTTTTTCTTTTTCGAACTAATAACTA 

ATGCATTTGC 

XhoI 

matS13240forBamATG 

 

TATATATAGGATCCATGGCAACGGACGTTGCG

ACG 

 

BamHI 

matS13240revXho TATATATACTCGAGGTTTTTAACTACAGTTGTA

GCATTATCGGCAA 

 

XhoI 

S13240revXhoArgTEV 

 

TATATATACTCGAGACCTTGAAAATAAAGGTT

TTCGCGTCGGCGTCGGCGTCGGTTTTTAACTAC

AGTTGTAGCATTATCG 

XhoI 

S13240revXhoHisTEV 

 

TATATATACTCGAGACCTTGAAAATAAAGGTT

TTCGTGATGGTGATGGTGATGGTTTTTAACTAC

AGTTGTAGCATTATC 

XhoI 

S13240revXhoLysTEV 

 

TATATATACTCGAGACCTTGAAAATAAAGGTT

TTCCTTTTTCTTTTTCTTTTTGTTTTTAACTACA

GTTGTAGCATTATCGGCAA 

XhoI 

matSbsCforBamATG TATATATAGGATCCATGGCAACGGACGTGGCG

AC 

 

BamHI 

matSbsCrevXho TATATATACTCGAGTTTGGCCAGCATTTGCAG

CAAC 

 

XhoI 

tRFP-XhoI-for TATATATACTCGAGATGAGCGAGCTGATCAAG

GAGAAC 

 

XhoI 
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tRFP-KpnI-rev TATATATAGGTACCTTATCTGTGCCCCAGTTTG

CTAGG 

 

KpnI 

 

2.1.9. Plasmids  
Plasmid Source 

p426GPD-SslA(aa31-925)-eGFP This study 

p426GPD-SslA(aa31-925)-Arg-TEV-eGFP This study 

p426GPD-SslA(aa31-925)-His-TEV-eGFP This study 

p426GPD-SslA(aa31-925)-Lys-TEV-GFP This study 

p426GPD-S13240(aa31-1069)-eGFP [69] 

p426GPD-S13240(aa31-1069)-Arg-TEV-eGFP This study 

p426GPD-S13240(aa31-1069)-His-TEV-eGFP This study 

p426GPD-S13240(aa31-1069)-Lys-TEV-eGFP This study 

p426GPD-eGFP [69] 

p426GPD-mSbsC(aa31-1099)-eGFP [69] 

p426GPD-mSbsC(aa31-1099)-TurboRFP This study 

 

2.2. Methods 
In this section, methods of DNA and protein techniques with other experimental works like 

growth and fluorescence measurements, live cell imaging, sporulation, colocalization, 

recrystallization of SL monomers, metallization studies and microscopy were presented. 

 

2.2.1. DNA Techniques 
Applied DNA methods were mainly composed of DNA gel electrophoresis, plasmid DNA 

isolation, polymerase chain reaction, DNA purification, restriction enzyme digestion, ligation 

and transformation which are listed below. 

 

2.2.1.1. DNA Gel Electrophoresis 

0.8% or 1% (w/v) agarose was dissolved in 1x TBE buffer (section 2.1.5.2). After boiling the 

mixture in the microwave oven, the solution was let to cool down. EB was added to the 

solution with the final concentration of 0.1 µg/ml before the gel was poured to the chamber. 

After polymerization, the gel was loaded with DNA samples. Fragments were separated in 1x 
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TBE buffer at constant voltage of 80 to 120 V. Detection was performed with the UV-light of 

the wavelength of 312 nm. Separated fragments were compared by size with the DNA 

fragments of the standard ladder, obtained upon digestion of λ phage DNA with BamHI and 

HindIII restriction enzymes.  

 

2.2.1.2. Isolation of Plasmid DNA from E. coli Cells 

Alkaline lysis method was applied for the isolation of plasmid DNA.  E. coli cultures were 

grown overnight. 2-4 ml of culture were poured into microfuge tubes and centrifuged at 

4,000– 5,000 x g for 5 min. After the pellet was resuspended in 200 μl of GTE solution, the 

400 μl of Solution I was added. The suspension was mixed by turning the tubes 6 times 

upside down and incubated on ice for 5 min. After the addition of 300 μl of KOAc solution, 

the mixture was vortexed and incubated on ice for 5 min. Following the centrifugation for at 

13,000 x g for 5 min, 600 μl of isopropanol was added. After the centrifugation at 13,000 x g 

for 5 min at 4 °C, the pellet was washed twice with ice-cold 70% ethanol (after each wash 

step the suspension was centrifuged for 5 min at 13,000 x g). The pellet was dried for 5 - 10 

min in the Eppendorf concentrator and resuspended in 50 μl of distilled water. Alternatively, 

NucleoBond
® 

Plasmid Purification kit was used according to the manufacturer instruction.to 

obtain highly purified DNA e.g. for sequencing and cloning methods.  

 

2.2.1.3. Polymerase Chain Reaction (PCR) 

The genes of interest were amplified by standard PCR from the corresponding plasmid 

sources with the primers listed in section 2.1.8. The following formula was used in order to 

calculate the anneling temperatures of the primers: 

Tm = 69,4°C + 0,41 x (GC-Percent) – 650/ Primer length - 6°C (MWG-BIOTECH) 

 

The PCR mix was composed of: 

 

Component Final concentration 

PCR-buffer (10x) 1 x 

Template (x ng/µl) 1 ng/µl 

dNTP mix (each dNTP 10 mM) 0,2 mM 

Forward primer (100 pmol/µl) 1,5 pmol/µl 

Reverse primer (100 pmol/µl) 1,5 pmol/µl 
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DNA polymerase (5 U/µl) 2,5 U 

Total volume (H2O up to :) 100 µl 

 

The following PCR program was used: 

4   min 95°C Initial denaturation 1x 

1   min 94°C 

1   min Ta 

n   min 72°C 

Denaturation 

Annealing 

Elongation 

 

30x 

10 min 72°C Final elongation 1x 

 

2.2.1.4. DNA purification techniques 

Purification of PCR products and the DNA fragments of interest from agarose gel were the 

two methods applied. 

 

2.2.1.4.1. Purification of PCR Products 

Invisorb® Fragment Cleanup kit was used for purifying the amplified PCR products 

according to the manufacturer`s instructions. 

 

2.2.1.4.2. DNA Fragment Purification from Gel 

A gel purification step was performed to purify the fragments with the size of interest. For 

this purpose, the DNA mixture was run on an agarose gel and a quick picture was made by a 

short-term UV irradiation. Fragments of interest were cut out of the gel and purified by 

Invisorb® Fragment Cleanup kit according to the manufacturer`s instructions. 

 

2.2.1.5. Digestion of DNA with Restriction Endonucleases 

1 µg of DNA was digested with 1 U of the corresponding restriction enzyme for 3-4 h at the 

permissive temperatures e.g. 37 °C in the appropriate buffer in a reaction volume of 50 µl. In 

double digestion reaction reactions, the buffer having the maximum activity for both enzymes 

was used. 

 

2.2.1.6. Ligation 

In the ligation reaction, the target vector and the DNA fragment were mixed with a molar 

ratio of 1:3 with T4 DNA ligase (2U) and T4 DNA ligase buffer (1X) in a final volume of 10 

µl and incubated at 4 °C or 16 °C overnight. 
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2.2.1.7. Transformation 

Transformation of E. coli cells was performed by electroporation after preparing the 

electrocomponent cells. Yeast cells were transformed by LiAc method. Both methods are 

explained below. 

 

2.2.1.7.1. Preparation of Electrocompetent Cells 

An overnight E. coli culture was diluted 1:100 with LB medium to a final volume of 400 ml 

and grown until OD600 of 0.5 at 37 °C. Cells were harvested by centrifugation at 4,000 x g for 

10 min at 4 °C. Next, pellets were washed twice in 200 ml of ice-cold sdH2O and centrifuged 

at 4,000 x g for 10 min at 4 °C. Then, each pellet was resuspended in 40 ml of ice-cold 10% 

(v/v) glycerol and centrifuged at 4,000 x g for 10 min at 4 °C. Cells were subsequently 

resuspended in 1 to 2 ml of ice-cold 10% (v/v) glycerol and aliquoted per 40 μl into sterile 

microfuge tubes. Obtained aliquotes were stored at –80 °C and thawed on ice prior to use. 

 

2.2.1.7.2. Transformation of E. coli Cells by Electroporation 

For transformation, 5-8 μl of ligation mixture which were dialyzed in a sterile petri dish 

against sddH2O using a piece of Millipore VS membrane  in order to get rid of the salts  was 

gently mixed with 40 μl of electrocompetent E. coli cells and transferred into the prechilled 

(in ice) electroporation cuvette. Electroporation was performed by the Gene pulser II setup 

(voltage: 2,5 kV; capacity: 25 μF; resistance: 200 Ω ). An optimal pulse duration of 4.5 – 5 

ms was estimated for a cuvette with 2 mm gap between the electrodes. After the pulse, 1 ml 

of pre-warmed (37 °C) SOC medium was immediately added to the transformation mixture. 

The cell suspension was taken into a microfuge tube and incubated at 37 °C for 1 hour. Next, 

the suspension was centrifuged at 2,500 x g for 1 min, 900 µl of the supernatant was 

discarded and the pellet was resuspended in the remaining solution. 10 µl of the final 

suspension was spreaded on an LB agar supplemented with Amp and Tet and incubated at 37 

°C overnight. 

 

2.2.1.7.3. Transformation of Yeast Cells 

Yeast cells were transformed using the LiAc procedure [91]. Shortly, an overnight grown S. 

cerevisiae culture was diluted to OD600 of 0.5 with YPD to a final volume of 20-50 ml and 

grown until OD600 of 2.0 at 30 °C 140-170 rpm for 3-5 h. 1 ml of cells was harvested by 

centrifugation at 3,000 x g for 5 min. The pellet was first washed with 1ml of sddH2O and 

then with 1ml of 100 mM LiAc solution (after each wash step the suspension was centrifuged 
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at 3,000 x g for 5 min). To the resulting pellet these components were added to a final volume 

of 360 µl in this order: 

1. 240 µl 50% PEG 

2. 36 µl 1 M LiAc 

3. 10 µl ssDNA (Herring Sperm DNA which was denatured at 95 °C for 5 min during the 

last centrifugation step) 

4. 1 µg plasmid 

5. sddH2O 

This suspension was incubated at 42 °C for 40 min (heat shock), centrifuged at maximum 

speed for 15 s and resuspended in 50-100 µl sddH2O which were then spread on a YNB agar 

supplemented with required aa to be incubated at 30 °C for 2-3 days until the colonies would 

appear. 

 

2.2.2. Protein Techniques 
Proteins were detected by SDS-PAGE and Western blot analyses as explained below. 

 

2.2.2.1. SDS-PAGE and Western Blot Analysis 

Electrophoretic separation of the proteins on polyacrylamide gel under denaturing conditions 

(in presence of SDS) was performed according to Laemmli [92]. Protein gels consisting of 

4% stacking gel and 12% separating gel were prepared. First, the separating gel was prepared 

by pouring the gel solution into the vertically aligned protein gel chamber and layered with 

isopropanol. After polymerization at room temperature (RT) for approximately 1 hour, 

isopropanol was removed and the stacking gel solution was pored onto the polymerized 

separating gel. A comb was inserted and the chamber was left for the polymerization of 

stacking gel. Next, the chamber was placed into the Mighty small II vertical gel 

electrophoresis system and filled with 1x Running buffer. To prepare the samples, yeast cells 

were grown overnight to OD600 of 2.0 at 30oC in supplemented YNB medium with glucose as 

the carbon source. Cell extracts were obtained by breaking the cells with glass beads by 

vigorous vortexing in the presence of protease inhibitors (1 mM AEBSF, and 1x Protease 

Inhibitor Cocktail). 10 μg of total protein was loaded to the gel. SDS-PAGE was performed 

first at 80V (for the stacking gel) and then at 120 V (for the separation gel). Gels were stained 

in Coomassie blue solution (section 2.1.4.4.) for 30 – 60 min at RT and washed subsequently 

with destaining solution (section 2.1.4.4.) until an optimal signal contrast was achieved. 

Proteins were transferred to a PVDF membrane using the semi-dry method for 2.5 h at RT at 
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1.5 mA/cm2. Protein marker was signed with a pen on the membrane and the membrane was 

blocked at least 1h at RT or over night at 4°C with 5% (w/v) non-fat dry milk in TBS-T. 

Membrane was incubated with monoclonal mouse anti-GFP antibody (1:1,000) in 5% (w/v) 

non-fat dry milk in TBS-T for 1h at RT and then washed three times for 5-10 minutes in 

TBS-T. Horseradish peroxidase-conjugated anti-mouse antibody (1:5,000) in milk was added 

to the membrane and incubated for 45 min at RT. Before the antigen-antibody complexes 

were visualised by enhanced chemiluminiscence (ECL plus), the membranes were washed 

three times for 5-10 minutes with TBS-T. 

 

2.2.2.2. Protein Concentration Assay and Cell lysis 

Protein concentration was determined with the Lowry assay based Bio-Rad Dc protein assay 

system according to the manufacturer`s instructions. Different concentrations of BSA were 

used for the preparation of the standard curve.  

 

2.2.3. Growth and Fluorescence Measurements 
Growth characteristics of yeast cells expressing S-layer proteins were determined by 

measuring the optical density in 96-well plates in the Nephelometer. 250 µl of cells were 

inoculated per well in YNB medium with an initial OD600 of 0.1. Plates were closed with an 

“easybreathe”-membrane and incubated at 30°C with shaking. Data were evaluated with the 

NEPHELOstar control software.  

 

For the fluorescence measurements, 250 µl of cells with OD600 of 0.1 were inoculated in 96-

well black plates with transparent bottom. Plates were incubated at 30oC with shaking in the 

Fluorostar microplate reader (FLUOROstar Omega, BMG Labtech) with a high energy xenon 

flashlamp as the light source. Fluorescence reading was performed in top reading 

measurement mode at excitation of 485 nm and emission of 520 nm. Data were evaluated by 

the FLUOROstar software. 

 

2.2.4. In vivo Protein Structure Investigation 
S. cerevisiae BY4741 cells expressing mSbsC-eGFP were grown overnight at 30oC in YNB 

medium supplemented with Leu, His, Met and glucose as the carbon source. 1 ml of the 

culture was centrifuged (3,500 x g, 5 min), resuspended in YNB medium and investigated 

with a fluorescence microscope (see below). 
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2.2.5. Live Cell Imaging 
For time lapse microscopy of budding cells, yeast cells were immobilized in an agar block as 

described [93]. Cells were grown in supplemented YNB medium with glucose as the carbon 

source to OD600 of 1.0-1.5. 1 ml culture was centrifuged (3,500 x g, 5 min) and resuspended 

in YNB broth. 5 µl of the suspension was pipetted on a glass coverslip and covered with a 

piece of YNB agar. In order to prevent drying, the agar slice was sealed with nail polish, and 

10 µl of YNB medium was dropped on top of it before placing the glass slide on the agar. 

Time-lapse experiments were conducted with temperature control at 30oC in 10 min intervals 

for 6-10 h with the 4D live imaging system.  

 

Live mating experiments were performed similarly. S. cerevisiae BY4741 (MATa) cells 

expressing SbsC-eGFP and the mating partner S. cerevisiae BY4742 (MATα) cells were 

grown overnight on YNB medium supplemented with Leu, His, Met (BY4741) / Lys 

(BY4742) and glucose as the carbon source. From each plate, with the help of sterile 

toothpicks, equal amounts of cells were taken, mixed in an eppendorf tube and resuspended 

in YNB medium. 5 µl of the suspension were pipetted onto a glass coverslip and a piece of 

YPD agar was laid over the drop of cells. In order to prevent evaporation, the agar slice was 

sealed with nail polish and 10 µl of YNB medium was dropped onto it before placing the 

glass slide over the agar. Mating of cells was investigated at RT with a fluorescence 

microscopy (ZEISS). Time-lapse experiments were conducted for 2-3 h. 

 

2.2.6. Sporulation 
S. cerevisiae BY4741 (MATa) cells expressing mSbsC-eGFP and BY4742 (MATα) cells were 

crossed and diploids were selected on YNB agar containing Leu and His. A single colony 

was taken and grown overnight in 20 ml YNB broth with Leu and His. Upon centrifugation, 

the cells were resuspended in 20 ml sporulation medium and incubated at 25°C for 20-30 

days. 

 

2.2.7. Colocalization Investigation Techniques 
 

2.2.7.1. α-tubulin Staining 

 S. cerevisiae W303 cells expressing YFP-TUB1 (kindly provided by Prof. T. U. Tanaka, 

University of Dundee, Wellcome Trust Biocentre, UK) were transformed with plasmid p426-
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GPD-mSbsC-tRFP, grown overnight in YNB broth at 30°C to OD600 of 2.0, and investigated 

with a confocal fluorescence microscope. 

 

2.2.7.2. Phalloidin Staining of Fixed Cells 

 Phalloidin staining was done as reported [66] with slight modifications. BY4741 cells 

expressing mSbsC-eGFP were grown to OD600 of 0.3-0.6 in 20 ml supplemented YNB broth 

and glucose as the carbon source, fixed for 5 min with formaldehyde (4% final 

concentration), centrifuged (3,500 x g for 5 min), and resuspended in 4% formaldehyde in 

PBS. After 30 min at 25oC, cells were washed twice with PBS and resuspended in 500 µl 

PBS. 100 µl of the cell suspension was mixed with 10 µl of BODIPY 650/665 phalloidin, 

which was prepared in methanol according to the instruction of the manufacturer and kept in 

the dark for 1 h. After washing the cells 3-5 times with PBS, they were investigated with the 

fluorescence microscope. 

 

2.2.7.3. DAPI Staining 

BY4741 cells expressing mSbsC-eGFP were grown overnight to OD600 of 2.0 in 20 ml YNB 

broth supplemented with the essential amino acids and glucose as the carbon source. 1 ml of 

the culture was mixed with 5 µl of DAPI to a final concentration of 2.0 µg/ml and incubated 

for 2-5 min at RT. Cells were centrifuged at 5,000 x g for 3 min, and the pellet was 

resuspended in 30-50 µl. 1.5-3 µl of this suspension was investigated with the fluorescence 

microscope.  

 

2.2.8. In situ SL Protein Extraction 
In situ protein extraction was done as described by Blecha et al. [57] with slight 

modifications. Shortly, S. cerevisiae BY4741 cells expressing mSbsC-eGFP were grown 

overnight at 30oC in 500-1,000 ml YNB medium supplemented with Leu, His, Met and 

glucose as the carbon source. Cells were centrifuged (5,000 x g, 3 min) and washed twice 

with 25 ml sterile distilled water (sdH2O) and once with sorbitol solution. Cells were 

spheroplasted with zymolase in 25 ml spheroplasting buffer for 1 h. Spheroplasted cells were 

centrifuged (3,000 x g, 5 min), washed with 20 ml sorbitol solution and resuspended in 25 ml 

sdH2O containing plasmid inhibitors (1mM AEBSF  and PI cocktail). After 10 min 

incubation on ice, in situ SL assemblies were collected in the pellet after centrifugation 

(20,000 x g, 30min, 4oC) and investigated with the fluorescence microscope (see below). 
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2.2.9 In vitro recrystallization of SL Monomers  
S. cerevisiae BY4741 cells expressing mSbsC-eGFP were spheroplasted and in situ protein 

structures were obtained as described above. Obtained SL containing pellets were 

resuspended in 10 times pellet volume of 5M freshly prepared GuHCl. Monomerization of 

SL structures was performed at RT by shaking for 1-2h. Monomers were collected in 

supernatant by centrifuging the denatured samples at 100,000 x g for 1h at 4oC with 

Optima™ Max Ultracentrifuge. In vitro recrstallization was performed by dialyzing 1-2 ml of 

monomer solution against 10 mM CaCl2 (pH 5.5, pH 7.5 and pH 9.0) in 6 - 8 KDa cut-off 

dialysis tubings (Spectrum) for at least 24h at 4°C and the resulting self-assembly products 

were stored at 4°C. In order to investigate the effect of Ca2+ concentration on in vitro 

recrystallization process, we dialyzed the monomers against 0 mM, 1 mM, 10 mM and 20 

mM CaCl2 at pH 9.0 for 24 - 48 h. 

 

2.2.10. Metallization 
Metallization of SL tubes was performed according to Wahl et al. [72] with some 

modifications. Dialysis buffer containing 50 µg of recrystallized protein was centrifuged 

(20,000 x g, 4°C, 15 min) and resuspended in 50 µl freshly prepared metallization buffer (3 

mM NaN3, 1 mM MgCl2 in 50 mM NaHPO4/Na2HPO4, pH 7.4). 1 ml of 30 mM K2PtCl4 salt 

solution (prepared 20-24 h before and kept in dark until the next day) was immediately added 

and the mixture was shortly vortexed. The suspension was incubated in the dark at RT on a 

rolling drum (6 rpm) for 4 hours. After centrifugation at 20,000 x g 4°C for 15 min, the pellet 

was resuspended in 100-200 µl of the buffer. 20-50 µl of the final suspension was 

immediately dropped on a SiO2 wafer that was cleaned by sonication for 15 min first in 

acetone, then in isopropanol, and finally in sterile double distilled water. After 30 min 

incubation at RT, excess liquid was removed with tissue paper and the same amount of sterile 

double distilled water was dropped on the wafer. After 15-30 min, the excess water was 

removed and the wafer was left to dry. The control sample was prepared with the same 

procedure in the absence of Pt salt. 

 

2.2.11. Fluorescence Microscopy 
The 4D live cell imaging system was a Zeiss Axiovert 200M microscope with a CCD 

detector, a Plan-Apochromat 63x/1.4 oil immersion objective, and the filter set FS 31001 

(Excitation Band Pass (Ex-BP) 480/30, Beam Splitter (BS) Long Pass 505, Emission Band 
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Pass (Em-BP) 535/40), and a HBO 100W Mercury arc lamp. MetaMorph 6.2v2 software was 

used as the imaging program.  

 

Analysis of sporulating yeasts was performed with a Carl Zeiss Axio Imager microscope with 

a CCD camera, a Plan-Neofluar 100x/1.30 oil immersion objective and the FITC filter set 44 

(Ex-BP 475/40, BSFT 500, Em-BP 530/50). Pictures were evaluated with the Carl Zeiss Axio 

Vision Product Suite.  

 

Colocalization of mSbsC-tRFP structures with α-tubulin was investigated with the laser 

scanning confocal microscope Leica DM 6000B with a Plan-Apochromat 63x/1.2 water 

immersion objective and a HBO 100 W mercury arc lamp and laser power sources. 

Excitation was performed with the 514 nm (YFP) or 561 nm laser (TRITC), and the emission 

was monitored with the detectors BP 560/50 (YFP) and BP 610/70 (TRITC). Picture 

evaluation was performed with the LAS AF Lite software program. 

 

Investigation of in vivo mSbsC-eGFP structures, DAPI staining and colocalization with the 

actin cytoskeleton were conducted with the Keyence Fluorescence Microscope (BZ-8100E) 

with a 120 W mercury lamp, a CCD camera and a Plan-Apochromat 100x/1.4 oil immersion 

objective, and the following filter sets: GFP: Ex-BP 472.5/30, BS DM 495, Em-BP 520/35, 

FS TxRed: Ex-BP 562/40, BS DM 593, Em-BP 624/40 and FS DAPI: Ex-BP 377/50, SB DM 

409, Em-BP 447/60. Deconvolution analyses of z-stack pictures with 0.1-0.2 µm intervals 

were performed with the BZ analyzer software.  

 

Length distribution analysis was counducted by measuring the tube lengths of fluorescent 

mSbsC-eGFP structures with ImageJ (http://rsbweb.nih.gov/ij/). 

 

2.2.12. Electron Microscopy 
Scanning electron microscopy (SEM) imaging was carried out with the LEO DSM 982 

Gemini SEM at a low voltage (2 kV) in high-vacuum (10-6 Pa). Energy dispersive X-ray 

spectroscopy (EDX) analysis was performed at 15 kV for the elemental analysis of metallized 

and unmetallized mSbsC-eGFP samples. 
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III. Results 
The aim of this study was to investigate the structure, thermal stability, in vivo self-assembly, 

recrystallization and metallization of three different recombinant SL proteins (SslA-eGFP, 

mSbsC-eGFP and S13240-eGFP) expressed in yeast S. cerevisiae BY4741 which could be 

further used in nanobiotechnological applications. For this purpose, the heterologous 

expression of SL fusion proteins was characterized with growth and fluorescence 

measurements coupled with Western blot analyses. Construction of 3D images by taking z-

stack images with a fluorescence microscope provided better characterization of SL-eGFP 

assemblies. Thermal stabilities of in vivo expressed SL-eGFP fusion proteins were 

investigated by fluorescence microscopy and immunodetection. In vivo self-assembly kinetics 

during mitosis and meiosis was the second main issue. In parallel, association of in vivo SL-

eGFP structures with the cellular components was of interest. Cell disruption experiments 

were conducted in order to free in vivo SL assemblies stably outside the cells (in situ). 

Monomerization of in situ SL-eGFP fusion proteins and subsequent recrystallization 

processes were resulted in the formation of fluorescent SL tubes or patches. Dialysis of 

monomerized fusion peptides at different conditions such as different ionic strengths, pH 

values and dialysis times provided information to understand the underlying in vitro 

recrystallization process better. Lastly, the metallization capacities of in vitro reassembled SL 

tubes for the possible applications in nanobiotechnology were studied. 

 

3.1. Expression of Recombinant SL Proteins in Yeast 

In order to express the SLs of interest (SslA (aa31-925), SbsC (aa31-1099) and S13240 

(aa31-1069) lacking the authentical signal peptides) tagged with eGFP (239 aa), S. cerevisiae 

strain BY4741 cells were transformed with plasmids p426-GPD-SslA-eGFP, p426-GPD-

mSbsC_oT-eGFP, p426-GPD-S13240-eGFP or p426-GPD-eGFP as a control. Growth 

analysis showed no significant impact of SL-eGFP expression on cell growth (Fig. 14 upper 

graph). Fluorescence measurements revealed that fluorescence increased until the stationary 

phase, before it strongly declined (Fig. 14 lower graph). 
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Figure 14. Growth and fluorescence curves throughout the cell cultivation. Upper curve: 
Nephelometer measurements show that S-layer expression slightly interferes with the wild type 
growth. Lower curve: Fluorostar measurements demonstrate that fluorescence intensity increases 
exponentially until the end of logarithmic phase whereas it starts to drop dramatically during the 
stationary phase showing the effect of decrease in cell duplication rate on fluorescence intensity. Dark 
blue, pink, yellow, turquoise and black curves are representing the S. cerevisiae BY4741 cells 
expressing SslA-eGFP, mSbsC-eGFP, S13420-eGFP, eGFP and wild type cells respectively. Cells 
were incubated in YNB media in 96 well plates with a starting OD (600nm) of 0.1 at 30oC with 
shaking. 
 
Western blot analysis of cell lysates of overnight grown cultures with eGFP-antibody showed 

bands of 123 kDa, 139 kDa, 137 kDa and 27 kDa in accordance with the calculated 

theoretical molecular masses of SslA-eGFP, mSbsC-eGFP, S13240-eGFP and eGFP 
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respectively (Fig. 15). Putative degradation products (Fig. 15, right) were observed after 

Western blotting although protease inhibitors were used during the sample preparation. 

Fluorescence microscopy investigations of overnight grown cultures showed that SslA-eGFP 

fusion protein was expressed as fluorescent patches (Fig. 15a), mSbsC-eGFP (Fig. 15b) as 

tubular networks and S13240-eGFP (Fig. 15c) as hollow-like fibrillar network structures 

while eGFP did not show any distinct structure (Fig. 15d).  

 

 
 

                Figure 15. Fluorescence images of S. cerevisiae BY4741 cells expressing (a) SslA-eGFP patches, (b) 
SbsC-eGFP tubular networks, (c) S13240-eGFP hollow-like fibrillar network structures and (d) eGFP. 
z-stack pictures with 0.1-0-2 µm intervals were taken and deconvolved. Western blot analysis with 
anti-GFP antibody revealed bands of 123 kDa (SslA-eGFP), 139 kDa (mSbsC-eGFP), 137 kDa 
(S13240-eGFP) and 27 kDa (eGFP) as can be seen on the right hand side of each picture. Cells were 
disrupted with glass beads and 10 µg of the cell lysates were separated on a 12% SDS gel. All 
experiments were conducted in the presence of protease inhibitors. M: Protein marker. Scale bar = 5 
µm 

 

For a more detailed characterization of in vivo SL-eGFP structures, z-stack pictures of cells 

expressing the corresponding SL fusion proteins were taken with 0.1-0.2 µm intervals and 3D 

reconstruction images were developed by deconvolution analysis. Still frame pictures of 3D 

reconstruction images are shown as top and side views in Fig. 16 where tubular blocks of 

different lengths ranging between 1.3-4.3 µm can be identified for mSbsC-eGFP (Fig. 16 

upper row). Fluorescent patches with diameters shorter than 1 µm were observed for SslA-

(a) 

(b) 

(c) 

(d) 
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eGFP (Fig. 16 second row). S13240-eGFP structures were seen as hollow network assemblies 

with a depth of ~2 µm (Fig. 16 lower row).  

 

 
 
Figure 16. Fluorescent still frame pictures of 3D reconstruction images of in vivo mSbsC-eGFP in S. 
cerevisiae BY4741 cells. Upper row: top and side views of in vivo mSbsC-eGFP structures consisting 
of at least 5 tube-like assemblies having lengths in the range of 1.3-4.3 µm. Second row: top and side 
views of in vivo SslA-eGFP patches with diameters shorter than 1 µm. Lower row: top and side views 
of S13240-eGFP in vivo hollow structure with a depth of ~2 µm. z-stack pictures with 0.1-0-2 µm 
intervals were taken an deconvolved into 3D reconstruction images. Scale bar = 5 µm  
 
For the expression of SL proteins (SslA (aa31-925), SbsC (aa31-1099) and S13240 (aa31-

1069)) tagged with positively charged aa (Arg, His or Lys, 6 aa), a TEV protease cleavage 

site (TEV, 7 aa) and eGFP (720 aa) which would further find applications in anion binding 

studies or in waste water treatment researches, p426-GPD-SL-3xArg/His/Lys-TEV-eGFP 

plasmids (Section 2.1.9) were generated, cloned and expressed in yeast S. cerevisiae 

BY4741. Fluorescence microscopy images of overnight grown cultures showed no structural 

differences from the corresponding in vivo SL-eGFP structures (Fig. 17). Western blot 

analysis of total cell lysates (in the absence of protease inhibitors) of overnight grown 
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cultures demonstrated the expected molecular weights of fusion proteins with some 

degradation products (Fig. 18). 

 

 
 
Figure 17. Fluorescence images of overnight grown S. cerevisiae BY4741 cells expressing SslA-
Arg/His/Lys-TEV-eGFP patches (first row) and S13240-Arg/His/Lys-TEV-eGFP hollow-like 
network structures (second row). Scale bar = 1 µm 
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Figure 18. Western blot analysis of overnight grown SL-Arg/His/Lys-TEV-eGFP expressing S. 
cerevisiae BY4741 cells. Western blot analysis with anti-GFP antibody showed bands of 124 kDa for 
SslA- Arg/His/Lys-TEV-eGFP, 138 kDa for S13240-Arg/His/Lys-TEV-eGFP and 27 kDa for eGFP 
which was the control. Cells were disrupted with glass beads and 10 µg of the cell lysates were 
separated on a 12% SDS gel in the absence of protease inhibitors. M: Protein marker 
 

Since many degradation products were observed in early western blot analyses, an expression 

analysis experiment was performed at later time points of cell cultivation in order to see the 

progression of degradation. Cells were incubated with an OD600 of 0.1 in YNB media 

supplemented with the essential aa and glucose. Samples were collected at certain time 

points, disrupted with glass beads and total cell lysates were analyzed by Western blotting in 

the presence of protease inhibitors. Results indicated an increase of degradation products with 

the cultivation time (Fig. 19). The least degradation was observed in mSbsC-eGFP expressing 

cells with a few remarkable additional bands detected at 45 kDa and 27 kDa which was 

corresponding to the eGFP band appeared after 8 h of incubation. No degradation product 

was observed in eGFP expressing cells.  
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Figure 19. Time course detection of SslA-eGFP (123 kDa), mSbsC-eGFP (139 kDa), S13240-eGFP 
(137 kDa) and eGFP (27 kDa) with anti-GFP antibodies during cultivation. Cells were incubated with 
an OD600 of 0.1 in YNB media. Cells were collected at the indicated time points, disrupted with glass 
beads and  7 µg of the cell lysates were separated on a 12% SDS gel. All experiments were conducted 
in the presence of protease inhibitors. M: Protein marker 
 

3.2. In vivo Thermal Stability of SL-eGFP Proteins 
With the aim of testing the in vivo stability of SL fusion proteins against high temperatures, 

overnight grown S. cerevisiae BY4741 cells expressing SL-eGFP with OD600 of 1.0-2.0 were 

centrifuged (3,500xg 5 min) and pellets were incubated at 80°C for 2 days and for additional 

2 days at 100°C. Corresponding bands for SslA-eGFP (123 kDa), S13240-eGFP (137 kDa) 

and eGFP (27 kDa) were detected by Western blot analysis (Fig. 20 right) after disrupting the 

pellets with glass beads. Some in vivo SslA-eGFP structures (in 8% of the observed cells) 

could be visualized by fluorescence microscopy (Fig. 20 upper row) after 4 days of heat 

treatment. However, no signal was detected from mSbsC-eGFP expressing cells neither after 

Western blotting nor fluorescence microscopy showing that this fusion construct was the least 

stable protein. The strongest bands were obtained for S13240-eGFP implying that this fusion 

protein is the most stable construct at these experimental conditions. 
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Figure 20. Temperature stability analysis of in vivo expressed SslA-eGFP (123 kDa), mSbsC-eGFP 
(139 kDa), S13240-eGFP (137 kDa) and eGFP (27 kDa) at combined temperatures of 80°C and 
100°C. Left: Fluorescence images of cells after the heat treatment. Right: The most stable fusion 
protein was S13420-eGFP with the strongest detected bands. The least stable protein was mSbsC-
eGFP. Cells were cultivated overnight, centrifuged (4,000 x g, 5 min), pelletted in microfuge tubes 
and incubated at 80oC for 2 days and at 100°C for additional 2 days. Dried cells were disrupted with 
glass beads and 10 µg of the cell lysates were separated on a 12% SDS gel. Proteins were detected 
with anti-GFP antibodies. All experiments were conducted in the presence of protease inhibitors. M: 
Protein marker  
 

Next set of experiments were performed by incubating the cell pellets at 100°C for 2, 6 and 8 

days or by autoclaving them at 121°C for 20 min (please refer to Fig. 15 for the 

corresponding fluorescence images and Western blot pictures of recombinant cells before 

heat treatment). Western Blot analysis showed that S13240-eGFP was the most stable fusion 

protein (Fig. 21). Some protein bands of S13240-eGFP could even be detected after 6 days of 

incubation at 100°C. None of the cells survived after 2, 6, and 8 days of incubation at 100 °C 

or after the autoclaving which were tested by cultivating the cells on YPD agar after each 

drying step. No yeast cell growth was observed. The second most stable protein was seemed 

to be SslA-eGFP which showed a band of 123 kDa with degradation products at the end of 2 

days. For mSbsC-eGFP I could just obtain very weak signals suggesting that most of this 

fusion protein was degraded during the heat treatment. Interestingly, eGFP was quite stable in 

that at the end of both 2 and 6 days I could detect signals at 27 kDa (Fig. 21). 
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After autoclaving the pellets at 121°C for 20 min, we obtained similar results. S13240-eGFP 

was the most stable protein showing the strongest signal. The weakest signal was detected for 

mSbsC-eGFP among the other SL-eGFP constucts.  

 

 
 
Figure 21. Temperature stability analysis of in vivo expressed SslA-eGFP (123 kDa), mSbsC-eGFP 
(139 kDa), S13240-eGFP (137 kDa) and eGFP (27 kDa) at 100°C. The most stable fusion protein was 
S13420-eGFP. Some S13420-eGFP bands could even be detected after 6 days of incubation. The least 
temperature stable protein was mSbsC-eGFP. After autoclaving the samples at 121°C for 20 min, 
signals from each construct could be detected. Cells were cultivated overnight at 30°C in 50 mL YNB 
medium, collected in 4 tubes (4X12.5 ml), centrifuged (4,000 x g, 5 min), pelletted in microfuge tubes 
and the pellets were either incubated at 100oC for 2, 6 and 8 days or autoclaved at 121oC. Dried cells 
were disrupted with glass beads and 15 µl of the cell lysates were separated on a 12% SDS gel. 
Proteins were detected with anti-GFP antibodies. All experiments were conducted in the presence of 
protease inhibitors. M: Protein marker  
 

After each heat treatment the dried samples were analyzed with a fluorescence microscope. 

At the end of 2 days of incubation at 100°C, I could observe the characteristic in vivo SL-

eGFP structures just for mSbsC (only 6% of the cells had the tubular assemblies, Fig. 22 

second row). The negative control (untransformed S. cerevisiae BY4741 cells) showed weak 

autofluorescence (Fig. 22). Although the characteristic SslA-eGFP and S13240-eGFP in vivo 

structures could not be visualized by fluorescence microscopy (Fig. 22), Western blot 

analysis showed protein bands (Fig. 21). After 2 days of incubation only 7% of the cells 

expressing SslA-eGFP were fluorescent but not showing the patch-like structures (Fig. 22). 

After 8 days of incubation at 100°C, I could observe neither protein bands with Western 

blotting nor any strong fluorescence signal with fluorescence microscopy. Although the 

autofluorescence can not be excluded, the absence of characteristic SL-eGFP structures can 

be explained by conformational changes of SL fusion proteins due to the heat treatment. This 
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could lead disassembly of SL monomers so that no distinct structure was visualized but eGFP 

like plain fluorescence was observed (Fig. 22). After autoclaving the pelleted cells at 121°C 

for 15 min, strong fluorescence signal was observed in some of the cells showing that the SL-

eGFP proteins were maintained without the characteristic in vivo structures (Fig. 22) but in 

the form of monomers which could have been detected with anti-GFP antibodies (Fig. 21). 
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Figure 22. Fluorescence images of SL-eGFP expressing cells after the heat treatment. Columns from 
left to right: cells incubated for 2 days, 6 days, 8 days at 100 °C and cells autoclaved at 121°C for 20 
min. Scale bar = 5 µm 
 
 
 
 
 
 
 



Results 

 60

3.3. In vivo Self-assembly Kinetics of mSbsC-eGFP 

While investigating the in vivo SL-eGFP structures, it was observed that during mitosis, buds 

emerging from SslA-eGFP, S13240-eGFP and eGFP expressing cells got fluorescent right 

after the newly developed bud appeared. But, for the mSbsC-eGFP expressing cells, the 

situation was different. The newly appearing buds were never fluorescent. This case raised 

the question how the mSbsC-eGFP structures are formed in vivo and how such tubular 

assemblies are transmitted to the buds during mitosis and meiosis. In this section in vivo 

mSbsC-eGFP formation during mitosis and meiosis was analyzed with live cell imaging.  

 

3.3.1. Formation of SL Assemblies during Mitosis  
Formation of SL assemblies during mitotic divisions was analyzed by live fluorescence 

imaging of 10 vegetative cells of S. cerevisae BY4741 strain expressing mSbsC-eGFP. The 

duration of mitosis in this strain was about 180 min. On average, SL assemblies became 

visible in the buds 126 min after the appearance of the bud projection (defined as t = 0 min). 

In no case, SL structures projected from the mother to the daughter cells. Instead, SL 

assemblies formed independently inside the daughter cells. This observation was made for 

both haploid (Fig. 23a) and diploid cells (Section 3.3.2). 100 min after the start of the 

observation, mSbsc-eGFP became visible as a single, very small (0.5-1.0 µm) dot-like 

structure (indicated by an arrow in Fig. 23a). This dot served as a nucleation center for the 

development of a short tube-like assembly. The growing tube changed its intracellular 

position and eventually bent to form a branched structure with two connected tubes. The 

further SL assembly proceeded via formation of triangular tubular network structure (Fig. 

23b).  
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Figure 23. Imaging of S. cerevisiae BY4741 cells expressing mSbsC-eGFP during mitosis. Bright 
field (left column) and fluorescence microscopy images (right column) were taken from a time-lapse 
series at the indicated time points. (a) Appearance of SL structures. Buds are numbered (1-3). Buds 1 
and 2 originate from fluorescent mother cells, while bud 3 stems from a non-fluorescent mother cell. 
Newly appearing SL structures are indicated with arrows. Bud emergence is defined as 0 min. (b) 
Branching of the SL structures. Progression of a SL tube-like structure (designated with the arrow) 
into a triangular tubular network is shown in different cells. Start of observation is defined as 0 min. 
Scale bar = 5 µm 
 

 

(a) (b)
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3.3.2. Formation of SL Assemblies during Meiosis  
In order to see how mSbsC-eGFP assemblies are formed and transmitted during meiosis, 

crossing of S. cerevisiae BY4741 (MATa) cells expressing mSbsC-eGFP and the mating 

partner S. cerevisiae BY4742 (MATα) cells was performed on YPD agar. The mating process 

was observed with a fluorescence microscope. The diploid bud of the zygote got fluorescent 

at the end of 50 min where the start of observation is defined as 0 min (Fig. 24, third row). 

Similar to the case of budding in haploid cells, the newly appeared diploid bud expressed 

mSbsC-eGFP fusion protein independently.  

 

 
 

Figure 24. Live microscopy imaging of S. cerevisiae zygote cell expressing mSbsC-eGFP during 
meiosis. Bright field (left column), fluorescence (middle column) and overlay (right column) images 
were taken from a time-lapse series at the indicated time points. mSbsC-eGFP protein extended 
towards the mating partner that was not having the corresponding plasmid expressing mSbsC-eGFP 
(shown with the red arrow). 50 min after the start of the observation, mSbsc-eGFP became visible as a 
single tube-like structure (indicated by the white arrow. Start of observation is defined as 0 min. Scale 
bar = 5 µm 
 

Unlike the budding case in haploid cells where mSbsC-eGFP tubes were not projected to the 

newly developed bud, during the cell fusion in meiosis, SL fusion proteins expressed by S. 

cerevisiae BY4741 (MATa) extended towards the mating partner BY4742 (MATα) that was 

not having the corresponding plasmid expressing mSbsC-eGFP (Fig. 24 & Fig. 25). In Fig. 

25 at t = 0 min a zygote with two mating partners, one showing the tube-like mSbsC-eGFP 

assemblies and the other expressing no mSbsC-eGFP protein can be seen. After 50 min of 

observation, a diploid bud emerged from the zygote; the tubular assemblies changed their 
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intracellular conformation and projected towards the mating partner without any fusion 

construct.  

 

 
 
Figure 25. Projection of mSbsC-eGFP tube-like structures during the cell fusion. Bright field (left 
column), fluorescence (middle column) and overlay (right column) images were taken from a time-
lapse series at the indicated time points. After 50 min of observation, a diploid bud emerged from the 
zygote meanwhile the tubular assemblies (showed with the red arrow) expressed by the mating 
partner on the right changed their intracellular position and projected towards the mating partner on 
the left lacking the fusion protein. Start of observation is defined as 0 min. Scale bar = 5 µm 
 

Live fluorescence microscopy investigations of S. cerevisiae cells expressing mSbsC-eGFP 

showed that the fusion protein was not transmitted to the daughter cells but the newly 

developed buds were expressing the SL proteins independently. Thus, I analyzed the diploid 

yeast cells after meiosis in order to investigate the SL expression or transmission pattern. 

Similar to the budding of haploid cells, the daughter cell of a diploid yeast cell got 
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fluorescent without any projection after 50 min of observation (Fig. 26, third row). mSbsC-

eGFP appeared in the form of a short tube-like structure which elongated into a tubular 

assembly of ~5 µm. 

 

 
 
Figure 26. Imaging of diploid S. cerevisiae BY4741 cells expressing mSbsC-eGFP during mitosis. 
Bright field (left column) and fluorescence microscopy images (right column) were taken from a 
time-lapse series at the indicated time points. New SL structure was formed independently (indicated 
with the white arrow). Start of observation is 0 min. Scale bar = 5 µm 
 

3.3.3. Formation of SL Assemblies during Sporulation 

The next aim was to investigate the transmission of SL structures expressed by a diploid cell 

to ascospores during meiosis. Sporulation of diploid cells, obtained by mating of S. cerevisiae 

strain BY4742 (MATα) with BY4741 (MATa) expressing mSbsc-eGFP, was induced and 30 

tetrads were analyzed by fluorescence microscopy (a representative example of analzed 

tetrads can be seen in Fig. 27). In most of the tetrads (67%) all four spores exhibited 
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fluorescent SL assemblies. 13% of the tetrads had three and 20% had two fluorescent spores. 

In general, one of the spores presented a significantly denser network that exhibited a 

stronger fluorescence. These observations suggest that preformed SL assemblies of the 

diploid cells are distributed to ascospores during meiosis.  

 

 
 
Figure 27. Fluorescence microscopy of tetrads. Diploid cells, obtained by mating of untransformed S. 
cerevisiae strain BY4742 (MATα) with BY4741 (MATa) expressing mSbsc-eGFP, were sporulated, 
and the resulting tetrads were analyzed by fluorescence microscopy. Scale bar = 2 µm 
 

3.4. Colocalization Studies 

Live fluorescence microscopy imaging of yeast cells during mitosis and meiosis showed that 

mSbsC-eGFP tube-like structures were not projected from mother cells to the daughter cells. 

But, in the case of cell fusion, SL projection was observed from one mating partner to the 

other. After sporulation, it was observed that in most tetrads, all of the spores of an ascospore 

got fluorescent. These findings brought us to the topic of in vivo localization of SL structures 

and their interactions with the cytoplasmic elements. For this purpose, I studied first the 

association of mSbsC-tRFP assemblies with yeast microtubules which are forming the yeast 
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cytoskeleton with actin patches and filaments. Secondly, the interaction of mSbsC-eGFP 

structures with actin network was investigated. The last target was the nuclear region and 

mitochondrial network.  

 

3.4.1. Colocalization with Microtubules 

Under the scope of investigation of in vivo mSbsC-tRFP colocalization with microtubular 

elements, S. cerevisiae W303 cells expressing YFP-tagged α-tubulin (YFP-TUB1) were 

transformed with plasmid p426-GPD-mSbsC-tRFP, and transformants were analyzed by 

confocal fluorescence microscopy (Fig. 28). Microtubules were visualized as yellow (due to 

the easiness of visualizing green and red in one picture, yellow signal was converted to green) 

tubular structures (Fig. 28, right column). mSbsC-tRFP structures were observed as red 

tubular assemblies (Fig. 28, left column). No overlap between the green and the red 

fluorescence could be observed in budding or not budding cells, demonstrating that mSbsC-

tRFP is not associated with microtubules.  
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Figure 28. Microtubule cytoskeletal elements do not colocalize with mSbsC-tRFP. First column: S. 
cerevisiae W303 cells (with and without buds) expressing YFP-TUB1 and mSbsC-tRFP; second 
column: S. cerevisiae W303 cells expressing YFP-TUB1. Pictures were taken with a confocal 
fluorescence microscope. Scale bar = 5 µm 
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3.4.2. Colocalization with Actin Network 

To visualize the actin network, S. cerevisiae BY4741 cells expressing mSbsC-eGFP were 

stained with phalloidin and analyzed with the fluorescence microscope. Actin networks were 

observed as red patches and filaments (Fig. 29 right column) and mSbsC-eGFP as tube-like 

structures (Fig. 29 left and middle columns). Except for a few small patches I did not observe 

an overlap of mSbsC-eGFP assemblies with the actin network in cells with buds or without 

buds, indicating that mSbsC-eGFP is not associated with actin meshwork (Fig. 29).  

 

 
 
Figure 29. Phalloidin staining. S. cerevisiae BY4741 early log cells expressing mSbsC-eGFP were 
stained with phalloidin and analyzed with the fluorescence microscope. A S. cerevisiae BY4741 cell 
expressing SL with or without a bud (left and middle column, respectively) and untransformed control 
cells (right column) were stained with phalloidin and analyzed by fluorescence microscopy (25 - 34 z-
stack pictures of 0.1 µm intervals were taken and deconvolved). Scale bar = 5 µm 
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3.4.3. Colocalization with Nucleus and Mitochondrial Network  

Lastly, I investigated the possible association of nuclear region and the mitochondrial 

network which were visualized by DAPI staining as blue (Fig. 30, right column) with 

mSbsC-eGFP tubes. Staining of DNA with DAPI gave no hint for association of the tubular 

SL structures with the nuclei or mitochondria (the staining was strong enough to detect the 

mirochondrial DNA with DAPI) in neither budding nor not budding cells (Fig. 30 left and 

middle columns).  

 

 
 
 
Figure 30. S. cerevisiae BY4741 cells (from exponential phase) expressing mSbsC-eGFP with (left 
column) and without a bud (middle column) were stained with DAPI and monitored with the 
fluorescence microscope. Untransformed S. cerevisiae BY4741 cells served as a control (right 
column). The newly formed SL structures (indicated by the white arrow) in the daughter cell are not 
associated with the nucleus or mitochondria (6-7 z-stack pictures of 0.3 µm intervals were taken and 
deconvolved). Scale bar = 5 µm  
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3.5. In vitro Recrystallization  
SL monomers can self-assemble into monomolecular arrays in suspensions, on solid surfaces, 

e.g. silicon, glass, carbon and synthetic polymers or lipid films [5]. In previous sections, it 

was demonstrated how in vivo SL tube-like structures formed (self-assembled) in yeast 

cytoplasm which is a fluidic environment during mitosis and meiosis. In this section, I 

investigated the in situ extraction, in vitro recrystallization of SL tubular structures and the 

factors affecting the recrystallization process. 

 

3.5.1. In vitro Recrystallization of mSbsC-eGFP 

In order to see if in vivo tube-like mSbsC-eGFP structures would be maintained out side the 

cells (in situ), yeast cells expressing mSbsC-eGFP (Fig. 32-1) were converted to spheroplasts 

by treatment with zymolyase and eventually burst open by osmotic shock. The in vivo SL 

structures were retained in the spheroplasts (Fig. 32-2) and even after the burst (Fig. 32-3), 

indicating their high stability. The in vivo and in situ structures differed in terms of length. 50 

of in vivo mSbsC-eGFP structures were randomly selected and their lengths were determined 

(Fig. 31a). Tube lengths varied from 0.78 µm to 5.06 µm, with an average of 2.49 µm. 36% 

of the tubes were in the range of 2-3 µm length. The average in vivo diameter was 0.3 µm. 

After burst of the cells, the average in situ tube length was 1.69 µm (Fig. 31b). The shortest 

tube was 0.66 µm and the longest was 4.77 µm. 63% of the tubes were in the range of 1-2 

µm. The average in situ diameter was 0.24 µm which was in line with the in vivo situation. 

We observed shorter tubular structures than the in vivo case, most probably, due to the 

change of environmental conditions like ionic strength, in vivo structures disassembled from 

the networking into shorter tubes during the osmotic shock  
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Figure 31. Length distribution analysis of in vivo and in situ mSbsC-eGFP structures a) Length 
distribution of 50 mSbsC-eGFP structures formed in vivo. Tube lengths varied from 0.78 µm to 5.06 
µm, with an average of 2.49 µm. b) In situ length distribution diagram of 30 mSbsC-eGFP structures. 
The average tube length was 1.69 µm. The shortest tube was 0.66 µm and the longest was 4.77 µm. 
63% of the tubes were in the range of 1-2 µm. 
 

After obtaining the tubular structures stably in situ, I monomerized them. Monomerization 

was performed by the treatment of in situ obtained proteins with a chaotropic agent (5 M 

GuHCl). Monomerized SL assemblies were no longer visible. Instead the image section 

showed a plain fluorescence without any structure (Fig. 32-4 & 32-5). Monomers were 

dialyzed in order to see if we would again obtain tubular fluorescent assemblies. Upon 

removal of GuHCl by 48 h of dialysis against 10 mM CaCl2 at pH 5.5 tubular SL structures 

formed again (Fig. 32-6). mSbsC-eGFP monomers were able to self-assemble in vitro into 

fluorescent tubes showing that eGFP did not interfere with the in vitro self-assembly process. 

Fluorescent in vitro recrystallized mSbsC-eGFP structures were investigated both with 

fluorescence microscopy and SEM (Fig. 36).  

 

(a)

(b)
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Figure 32. Fluorescence microscopy images of in vitro recrystallization of SbsC-eGFP. 1) Cells 
expressing tubular SbsC-eGFP assemblies were grown overnight with shaking at 30oC in YNB media 
and centrifuged 2) Pellet of cells was resuspended in spheroplasting buffer containing zymolase and 
incubated at 30oC for 1.5 h. In vivo tubular structures were maintained during the enzymatic 
disruption of the cell walls in situ. 3) Spheroplasts were burst with osmotic shock and SL tubes were 
collected as a pellet. 4) In order to obtain SL monomers, pellet was resuspended in 5 M GuHCl. After 
1 h of incubation, no SL structure was observed. 5) Monomers were collected in supernatant. 6) 
Following the removal of the chaotropic agent GuHCl by dialysis against 10 mM CaCl2 for 48 h, we 
obtained the successful reassembly of SbsC-monomers into fluorescent tubular structures in dialysis 
buffer. Scale Bar =5 µm 
 

3.5.2. In vitro Recrystallization of S13240-eGFP 

The same procedure was followed for S13240-eGFP expressing cells. The corresponding 

cells were first spheroplasted and then burst with osmotic shock. Structures observed in 

spheroplasts and in pellets after the osmotic shock were similar (Fig. 33-1 & Fig. 33-2). 

Fibrillar network structures were obtained in the pellet after the osmotic shock. Following the 

monomerization, no specific SL structure was seen, instead only plain fluorescence without 

any structure was visualized (Fig. 33-3). Removal of GuHCl by dialysis for 48 h against 10 

mM CaCl2 at pH 5.5 resulted in the formation of fluorescent SL structures (Fig. 33-4). The 

obtained in vitro assemblies were similar to in situ case but the structures were more densely 

packed most probably due to the changed ionic strength of the environment. 

(c)
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Figure 33. Fluorescence microscopy images of in vitro recrystallization of S13240-eGFP. Cells 
expressing tubular S13240-eGFP assemblies were grown overnight with shaking at 30oC in YNB 
media and centrifuged 1) Pellet of cells was resuspended in spheroplasting buffer containing zymolase 
and incubated at 30oC for 1.5 h. In vivo network structures were maintained during the enzymatic 
disruption of the cell walls in situ. 2) Spheroplasts were burst with osmotic shock and SL assembles 
were collected as a pellet. 3) Pellet was resuspended in 5 M GuHCl. After 1 h of incubation, no SL 
structure was observed. Monomers were collected in supernatant. 4) Following the dialysis against 10 
mM CaCl2 for 48 h, the successful reassembly of S13240-monomers into fluorescent structures in 
dialysis buffer was observed. Scale Bar = 5 µm 
 

3.5.3. In vitro Recrystallization of SslA-eGFP 

In vitro recrystallization of SslA-eGFP assemblies was performed similar to other SL-eGFP 

preparations (Fig. 34). In spheroplasting buffer, I observed the cells expressing SslA-eGFP 

with fluorescent patches which were maintained after the osmotic shock as well (Fig. 34-2). 

Plain fluorescence lacking any distinct structure was obtained after the monomerization step 

(Fig. 34-3). Unlike mSbsC-eGFP and S13240-eGFP monomers for which 24 h of dialysis 

was enough for the formation of SL assemblies, SslA-eGFP monomers took 2 weeks to form 

fluorescent assemblies of finer patches and tube-like structures (Fig. 34-4). In situ and in vitro 



Results 

 74

SslA-eGFP structures were different. While these SL proteins formed fluorescent patches in 

situ, after recrystallization they self-assembled into finer patches together with tube-like 

assemblies in vitro. 

 

 
 

Figure 34. Fluorescence microscopy images of in vitro recrystallization of SslA-eGFP. Cells 
expressing SslA-eGFP were grown overnight with shaking at 30oC in YNB media and centrifuged 
down. 1) Pellet of cells was resuspended in spheroplasting buffer containing zymolase and incubated 
at 30oC for 1.5 h. In-vivo tubular structures were maintained in-situ during the enzymatic disruption of 
the cell walls. 2) Spheroplasts were burst with osmotic shock and S-layer patches were collected as a 
pellet. 3) S-layers were monomerized in 5 M GuHCl solution. After 1 h of incubation, no S-layer 
structure was observed. Monomers were collected in supernatant. 4) Following the dialysis against 10 
mM CaCl2 for 2 weeks, SslA-eGFP monomers self-assembled into fluorescent structures in dialysis 
buffer. Scale Bar = 5 µm 
 

3.5.4. eGFP as Control 
As a control the recrystallization experiment was conducted with only eGFP expressing yeast 

cells. After the enzymatic disruption of the cell walls, no distinct structure was observed (Fig. 

35-1). Spheroplasts showed the same in vivo homogeneous fluorescence pattern. In vitro 

recrystallization resulted in the formation of plain fluorescence areas rather than any distinct 

structure (Fig. 35-4). 
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Figure 35. Fluorescence microscopy images of in-vitro recrystallization of eGFP. Cells expressing 
eGFP were grown overnight with shaking at 30oC in YNB media and centrifuged down. 1) Pellet of 
cells was resuspended in spheroplasting buffer containing zymolase and incubated at 30oC for 1.5 h. 
2) Spheroplasts were burst with osmotic shock 3) Proteins were monomerized in 5 M GuHCl 4) 
Following the dialysis against 10 mM CaCl2 for 48 h or longer, no specific structure was observed 
other then some coagulated eGFP proteins. Scale Bar = 5 µm 
 

3.5.5. Characterization of In vitro Recrystallized SL-eGFP Structures 

All of the SL-eGFP monomers were able to self-assemble into specific structures namely 

tubes, patches or networks after dialysis against 10 mM CaCl2 at pH 5.5. These in vitro 

structures were investigated both with a fluorescence microscope and SEM. mSbsC-eGFP 

structures were composed of tubular assemblies (Fig. 36, second row). SslA-eGFP monomers 

self-assembled into either patches or tubular structures (Fig. 37, first column). However, the 

patches that were observed with SEM were larger than the ones observed with the 

fluorescence microscopy (Fig. 36, first row). Most probably, some of SslA-eGFP proteins 

failed to get fluorescent due to the misfolding of eGFP. In vitro S13240-eGFP assemblies 

were observed as oval surfaces with the fluorescence microscopy (Fig. 36, third row). 
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Although mSbsC-eGFP was mostly visualized as tubular assemblies, SslA-eGFP and 

S13240-eGFP were observed as either patches, folded layers or tube-like structures (Fig. 37). 

 
 
 

 

 
Figure 36. Fluorescence microscopy (a) and SEM (b) images of in vitro recrystallized recombinant 
mSbsC-eGFP from S. cerevisiae BY4741 cells. SL were isolated from osmotically lysed cells by 
centrifugation, monomerized with 5 M GuHCl, and dialyzed against 10 mM CaCl2 at pH 5.5 for 48 h. 
SEM pictures were made at 2 kV. Red scale bar = 5 µm 
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Figure 37. SEM images of different forms of in vitro recrystallized SslA-eGFP and S13240-eGFP 
proteins from S. cerevisiae BY4741 cells. SL were isolated from osmotically lysed cells by 
centrifugation, monomerized with 5 M GuHCl, and dialyzed against 10 mM CaCl2 at pH 5.5 for 48 h. 
Pictures were made at 2 kV. 
 

3.5.6. Recrystallization of mSbsC-eGFP on Surfaces 

It has recently been reported that SL monomers can self-assemble into monomolecular arrays 

in suspensions, on solid surfaces e.g. silicon, glass, carbon and synthetic polymers or lipid 

films [5]. In previous sections, results regarding in vivo and in vitro reassembly of various 

SL-eGFP fusion proteins were presented. In all cases, recrystallization had taken place in 

solutions namely either in yeast cytoplasm (in vivo) or in dialysis buffer (in vitro). 

Reassembly products were mainly composed of fluorescent tube-like structures, patches or 

multi-layers. Thus, a set of experiments were performed to recrystallize mSbsC-eGFP 

monomers on solid surfaces. In fact, a glass cover slip was divided into pieces and placed into 
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the dialysis tubings containing the SL monomers. The tubing content was dialyzed against 10 

mM CaCl2 for 24 h at pH 5.5 and the pieces of glass were investigated with a fluorescence 

microscope. I could not observe any tube-like assemblies on the glass surfaces; instead, 

mSbsC-eGFP monomers self-assembled into fluorescent multi-layers (Fig. 38).  

 

 
 
Figure 38. In vitro recrystallization of mSbsC-eGFP monomers on a glass surface. Pieces of glass 
were placed into the dialysis tubings containing the SL monomers. The tubing content was dialyzed 
against 10 mM CaCl2 for 24 h at pH 5.5 and the pieces of glass were investigated with a fluorescence 
microscope. Scale Bar = 5 µm 
 

3.5.7. Influence of Calcium Concentration, pH and Dialysis Time on in vitro 

Recrystallization Process 

All of the in vitro recrystallization experiments were conducted in the presence of 10 mM 

CaCl2. In this section, the factors affecting in vitro recrystallization process were 

investigated. The question was: Can we control the length and the diameter of in vitro formed 

mSbsC-eGFP tubes? For this purpose, effects of CaCl2 concentration, pH and the dialysis 

time on the in vitro reassembly process of mSbsC-eGFP monomers were studied. 

 

3.5.7.1. Effect of Calcium Concentration 

The first parameter to investigate the recrystallization process was the calcium concentration 

of the dialysis buffer. mSbsC-eGFP fusion protein monomers were analyzed by applying 

CaCl2 concentrations of 0 mM, 1 mM, 10 mM, and 20 mM, respectively, in the dialysis 
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buffer. Dialysis was performed for 24 h and 48 h at pH 9.0. In the absence of calcium I 

observed aggregates of fluorescent proteins, but no tubular structures, neither after 24 h nor 

after 48 h (Fig. 39, top row). Likewise fluorescence aggregates formed in the presence of 1 

mM CaCl2, however after 48 h I noticed short tubes of less than 1 µm length (Fig. 39, second 

row). Recrystallization of SL monomers into tubes longer than 3 µm was observed in the 

presence of 10 mM CaCl2 (Fig. 39, third row). Further increase of the CaCl2 concentration to 

20 mM resulted in shorter tube structures and the concomitant appearance of multiple dot-

like structures (Fig. 39, last row).  
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Figure 39. In vitro recrystallization of mSbsC-eGFP monomers at different CaCl2 concentrations. 
Tubular structures were obtained by dialyzing the monomers against 0 mM, 1 mM, 10 mM and 20 
mM CaCl2 for 24 h (first column) and for 48 h (second column) at pH 9.0. Scale Bar = 5 µm 
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3.5.7.2. Effect of pH and Dialysis Time  

The effect of the pH value on the recrystallization of mSbsC-eGFP was tested by varying the 

pH of the dialysis buffer which is mainly composed of 10 mM CaCl2. Three different pH 

values were analyzed: pH 5.5, pH 7.5, and pH 9.0 (Fig. 40). With higher pH values, the 

average length of the SL tubes increased from 2.5 µm (pH 5.5) and 2.96 µm (pH 7.5) to 3.34 

µm (pH 9.0) after 24 h dialysis, and from 2.69 µm (pH 5.5), 3.61 µm (pH 7.5) to 4.13 µm 

(pH 9.0) after 48 h dialysis (Table 3). The longest tubes with 8.11 µm and 9.08 µm were 

obtained at pH 9.0 after 24 h and 48 h, respectively (Table 3). The average in vitro tube 

diameter was in the range of 0.3-0.5 µm as in vivo and in situ. Additionally, regardless of the 

pH of the dialysis buffer, when the dialysis was performed longer, it was observed that the 

average tube lengths got longer (Table 3). For example, at pH 9.0 the average tube length was 

3.34 µm after 24 h of dialysis. At the end of 48 h, the average tube length increased to 4.13 

µm. This observation was the same for other pH values. 

 

Table 3. Effect of dialysis time and pH on maximum, minimum, and average lengths of in 
vitro recrystallized mSbsC-eGFP tubular structures  
 

 
 

Dialysis time 

        pH 5.5 

Max     Min    Avg 

       pH 7.5 

Max     Min    Avg 

        pH 9.0 

Max     Min    Avg 

24 h 6.11     0.80    2.50 5.72     1.24    2.96 8.11     0.81    3.34  

48 h 5.76     0.67    2.69 7.07     0.61    3.61 9.08     1.00    4.13 

 

 

 

 

 

 

 

 

 

 

 

 

  mSbsC-eGFP length (µm) 
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Figure 40. Length distribution diagram of 50 recrystallized mSbsC-eGFP proteins at different pH 
values. Tubular structures were obtained by dialyzing the monomers against 10 mM CaCl2 for 24 h 
(a) and for 48 h (b) at pH 5.5, pH 7.5 and pH 9.0. 
  

3.6. Metallization of mSbsC-eGFP Tubes  
Metal deposition on SL structures has been widely studied. Mertig et al. [49] have utilized SL 

of S. ureae with tetragonal lattice symmetry and 13.2 nm lattice spacing as a protein template 

to chemically deposit platinum clusters leading to the formation of highly ordered arrays of 

platinum. Besides the chemical deposition of metal nanoparticles or ions on SLs, one can also 

apply electrodeposition. Allred et al. [51] reported isolation and recrystallization of SLs from 

different microorganisms on platinum coated gold surfaces, and subsequent electrodeposition 

of cuprous oxide as a step towards electrochemical nano-device fabrication. In this section, I 

(a) 

(b) 
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investigated the possibility to perform chemical deposition of platinum on in vitro 

recrystallized tubular mSbsC-eGFP structures and the factors influencing this process.  

 

3.6.1. Effect of Temperature on Metallization 

To this end, the SL assemblies formed upon dialysis were treated with K2PtCl4 in the 

presence of a reducing agent (NaN3). I investigated the effect of reaction temperature on the 

reduction potential of Pt2+ ions. For this purpose metallization was performed at RT and at 

4oC. I observed the accumulation of Pt particles on SL tubes after 4 h of reduction reaction at 

only RT as can be seen in Fig. 41a. The reaction conducted at 4oC for 4 h did not demonstrate 

any formation of metal particles due to the decreased reaction rate (Fig. 41b). The observed 

SL tubes were not covered with any metal particulates and they have the same physical 

appearance as the control sample which was containing the reducing agent but not K2PtCl4 

and which was incubated at RT for 4 hours. 

 

 
 

Figure 41. Metallization of in vitro recrystallized mSbsC-eGFP tubes at different temperatures. SLs 
resuspended in metallization buffer containing the reducing agent (3 mM NaN3) were incubated in 3 
mM salt solution and incubated for 4 h at (a) RT and (b) 4oC. (c) SLs resuspended in metallization 
buffer without any K2PtCl4 as control (after 4 h of incubation at RT). Pictures were made at 2 kV with 
SEM. 
 

3.6.2. Effect of Platinum Concentration on Metallization 

In order to optimize the amount of Pt required for the metallization process, I tested different 

combinations of K2PtCl4 and protein concentrations. For this purpose, metallization was 

performed at RT for 4 h with three different K2PtCl4 concentrations: 3 mM, 6 mM and 30 

mM. I observed an increase in plasticidity caused by the metal coat with SEM as K2PtCl4 

concentration was increased from 3 mM to 30 mM (Fig. 42, first row). Control samples were 

(a) (b) (c) 
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visualized as 2D dark thin tubular layers (Fig. 42, second row). Metallized probes were 

brighter due to the increased contrast caused by bound metal particles so that I could make 

more detailed, better focused pictures where folded layers of SL tubes could be visualized 

(Fig. 42a & Fig. 44a).  

 

 
 
Figure 42. Metallization of in vitro recrystallized mSbsC-eGFP tubes at different K2PtCl4 
concentrations. SLs resuspended in metallization buffer containing the reducing agent (NaN3) were 
incubated in 3 mM (a), 6 mM (b) and 30 mM (c) K2PtCl4 salt solution and incubated for 4 h at RT. 
Lower row represents the control SL samples resuspended in metallization buffer containing 3 mM 
(d), 6 mM (e) and 30 mM (f) NaN3 without any K2PtCl4. Pictures were made at 2 kV with SEM.  
 
 

Samples metallized with 3 mM, 6 mM and 30 mM K2PtCl4 at RT for 4 h were investigated 

with a fluorescence microscope. Control samples containing the reducing agent but not the 

metal salt solution showed fluorescent mSbsC-eGFP tubes showing that the reducing agent 

did not interfere with eGFP signal (Fig. 43). In the brightfield the tubular structures could not 

be observed due to their thinness (Fig. 43). Upon metallization, the tubes could be visualized 

in the brightfield due to the increased contrast and thickness caused by the metal coats. As the 

metal concentration increased, the brightfield signal was enhanced showing the effect of the 

metal coat (Fig. 43). Interestingly, I could not observe any fluorescence signal in metalized 

samples.  

(a) (b) (c)

(d) (e) (f)
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Figure 43. Fluorescence and brightfield images after and before metallization with different K2PtCl4 
concentrations. Samples were resuspended in NaN3 buffer without K2PtCl4 as control (“before”). 
Metallization occurred by addition of 3 mM, 6 mM and 30 mM K2PtCl4 in the presence of reducing 
agent NaN3 (“after”). The exposure times for brightfield and the fluorescence images are 1/9 s and 8 s, 
respectively. Scale bar = 5 µm 
 

Optimal conditions for the regular deposition of Pt were obtained with 30 mM K2PtCl4 and 

50 µg of protein. As can be seen in Fig. 44a (left), the SL tubes were coated under these 

conditions with Pt, as revealed by EDX analysis (Fig. 44a, right). The additional peaks for 

chlorine and potassium originate from the K2PtCl4 salt solution. In the control sample, which 

was treated in the absence of platinum salt, no Pt peak was obtained (Fig. 44b). The 

metalized structure seen in Fig. 44a nicely demonstrates that the tube-like structures resulted 

from folded layers. 

 

 
 
Figure 44. SEM images of tube-like structures from in vitro recrystallized mSbsC-eGFP. SL 
structures were treated with (a) or without (b) K2PtCl4 in the presence of NaN3. The regular deposition 
of Pt was obtained with 30 mM K2PtCl4 and 50 µg of protein. Pictures were made at 2 kV. The 
respective EDX graphs are shown on the right. Analysis was conducted at 15 kV. 

(a) 

(b)
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IV. Discussion 
 
4.1. Expression Analyses of Recombinant SL Proteins in Yeast 

SslA-eGFP (123 kDa), mSbsC-eGFP (139 kDa) and S13240-eGFP (137 kDa) fusion proteins 

were expressed in yeast S. cerevisiae BY4741 and it was observed that the recombinant 

protein expression did not interfere with the growth of the culture (Fig. 14) as it was already 

reported by Blecha et al. [57]. This showed that the heterologous expression of SL-eGFP 

proteins did not have any obvious side-effect on wild-type yeast metabolism and cell cycle 

mechanism.  

 

Fluorescence measurements revealed that fluorescence signal increased during the 

exponential phase, but it decreased dramatically with the beginning of the stationary phase 

(Fig. 14). This was most probably caused by a combination of reduced protein expression 

level, elevated proteolysis, and decrease of the intracellular pH during the stationary phase. It 

was previously reported that activities of many proteolytic enzymes, i.e aminopeptidase 

yscCo, carboxypeptidase yscY, proteinase yscA and proteinase yscB, increased several folds 

when S. cerevisiae cells entered the stationary phase [95]. Western blot analyses were 

performed in the presence of protease inhibitors by collecting cell samples at certain time 

points throughout the cultivation. Protein degradation was already detected in mid-

exponential cells (Fig. 19) showing that one of the reasons causing the fluorescence decrease 

was proteolysis. It is known that the fluorescence intensity of eGFP depends on various 

factors such as pH, temperature, protein concentration and preliminary illumination [73]. It 

was previously published that during the stationary phase, yeast cellular pH decreases. Imai 

et al. [74] have shown that the intracellular pH of S. cerevisiae cells was decreasing from pH 

6.8 (exponential phase) to pH 5.5 (stationary phase) by using a fluorescence microscopic 

image processing technique. Tsien [73] has stated that wild-type GFP can be quenched at 

high (pH > 11) or low (pH  < 5) pH values and the GFP variants such as eGFP which were 

designed to have enhanced spectral properties at pH 7.0 are more sensitive to pH changes. 

Patterson et al. [75] have reported that eGFP can be quenched 50% at pH 5.5 which was 

found to be the intracellular pH value of stationary yeast cells. This conclusion is in line with 

our results where I observed a sharp decrease in fluorescence intensities of stationary S. 

cerevisiae cells expressing SL-eGFP fusion proteins.  
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Fluorescence imaging revealed that SslA-eGFP fusion protein was expressed as fluorescent 

patches, mSbsC-eGFP as tubular networks and S13240-eGFP as hollow-like fibrillar network 

structures while eGFP did not show any distinct structure (Fig. 15). The in vivo SL-eGFP 

structures remarkably differed from that of the native bacterial envelope structures where SL 

monomers self-assembled into highly porous mono- or multi-layers [11]. Although SbsC and 

S13240 monomers can form assemblies with oblique symmetries [69], these two SL proteins 

self-assembled into different structures in vivo. This could have resulted from different 

patterns of monomer-monomer interactions which were most probably caused by the aa 

composition of SLs. It has been demonstrated that SbsC and S13240 have 95.6 % homology 

for 270 aa of the N-terminal region which is not necessary for the self-assembly process [69].  

Recently, Pavkov et al. [25] have investigated the structure and binding characteristics of 

SbsC. They reported that SbsC is composed of six separate domains connected by short 

flexible linkers. Domain I (aa31-260) contains mostly positively charged and aromatic side 

chains, which mediate the binding to negatively charged Secondary Cell Wall Polymers 

(SCWP). The remaining domains together with the C-terminal part are responsible for the 

monomer-monomer interactions. Since the remaining domains` aa compositions differ in 

SbsC and S13240, it is possible to have altered monomer-monomer interactions resulting in 

the formation of different in vivo SL-eGFP structures. SslA, which was determined to have a 

tetragonal symmetry [70], was observed to form fluorescent patches in vivo. 

 

Contrary to the findings of Blecha et al. [57] who did not observe any degradation products 

during the mSbsC-eGFP expression in S. cerevisiae, some degradation products were noticed 

in all of the SL-eGFP constructs during the cultivation despite the use of protease inhibitors 

during the cell lysis step (Fig. 15). Possibly, the time point and/or modifications of the sample 

preparation can account for the observed differences. It was seen that as the cultivation time 

increased, the level of degradation raised. Surprisingly, no degradation product was detected 

for eGFP. Since eGFP is composed of a barrel structure composed of 11 β-strands [73], this 

makes the protein quite stable against proteolytic degradation. However, time course 

detection of SL-eGFP constructs with monoclonal anti-GFP antibodies showed the presence 

of degradation bands lower than 27 kDa implying that eGFP was degraded during the 

cultivation (Fig. 19). Most probably, fusion of SL proteins to eGFP altered the conformation 

of the fluorescence protein so that possible hidden proteolytic cleavage sites of the native 

protein became accessible for proteases. Among the SL-eGFP fusion proteins, mSbsC-eGFP 

was the most proteolysis resistant protein since less degradation bands were detected (Fig. 
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19). mSbsC-eGFP monomers form tube-like in vivo assemblies which can be found as a 

network as well. During the self-assembly process, protease binding sites could be located in 

such a way that this may make the SL fusion proteins less accessible to proteases, thus 

making them more stable to intracellular degradation. 

 

Additionally, I investigated the heterologous expression of SL proteins (SslA, SbsC and 

S13240) tagged with positively charged aa (Arg, His or Lys), a TEV protease cleavage site 

(TEV) and eGFP. The aim was to construct SL proteins capable of binding toxic metals 

which are found as anionic compounds in wastewater such as selenium, arsenic, molybdenum 

and antimony [76]. For this purpose, p426-GPD-SL-3xArg/His/Lys-TEV-eGFP plasmids 

(Section 2.1.9) were generated, cloned and expressed in yeast S. cerevisiae BY4741. 

Fluorescence microscopy images of overnight grown cultures showed no structural 

differences from the corresponding in vivo SL-eGFP structures (Fig. 17) showing that the 

additional aa-TEV tags did not interfere with the in vivo fusion protein expression. 

 

4.2. In vivo Thermal Stability of SL-eGFP Proteins 

Proteins are programmed to function efficiently at the environmental temperatures of 

organisms to which they belong meaning that proteins are mainly functionally active in a 

specific temperature range. Outside this range, proteins can lose their structural integrity, 

denature and lose their functionalities [77]. In this study, thermal stabilities of in vivo 

expressed SL-eGFP constructs were investigated. Pellets of cells expressing the 

corresponding SL fusion proteins were incubated at 80°C for 2 days and for additional 2 days 

at 100°C. Corresponding protein bands for SslA-eGFP (123 kDa), S13240-eGFP (137 kDa) 

and eGFP (27 kDa) were detected by Western blotting. In contrast, no protein signal was 

detected for mSbsC-eGFP. The most and the least thermostable fusion constructs were 

S13240-eGFP and mSbsC-eGFP respectively according to the Western blot analyses where 

the strongest signals were detected from S13240-eGFP expressing cells. The same results 

were obtained with the second set of experiments conducted at 100°C for 2, 6 and 8 days.  

 

SbsC and S13240 are SL proteins of two different strains of thermophilic B. 

stearothermophilus bacteria. These cells can be cultivated optimally at 55 °C and some of 

their proteins have been found to be stable at elevated temperatures, i.e. α-Amylase from B. 

stearothermophilus was found to show activity even at 95°C [78]. It has been reported that 



Discussion 
 

 90

thermostable proteins are rather compact (well-packed), they have larger surface areas hidden 

upon oligomerization and they were composed of increased number of hydrogen bonds [79]. 

SL proteins are composed of monomeric subunits which interact with hydrogen bonds 

making them more thermostable. According to Western blot analyses, mSbsC-eGFP fusion 

protein was the weakest protein in terms of thermal stability because the regarding protein 

bands could not be detected after the heat treatment. This could be explained by the tertiary 

structure of the protein. Until now, only the tertiary structure of SbsC has been studied. 

Pavkov et al. [25] have reported on the structure and binding characteristics of SbsC. They 

stated that SbsC is formed of six domains connected by short flexible linkers and each 

domain is arranged in such a way that the whole protein has an elongated structure which 

looks like a string. This reveals that the SbsC monomers are not compact, but instead 

elongated, that makes them less thermostable. Lately, it has been reported on thermal and 

chemical denaturation of SL protein of B. sphaericus (SbpA) having a square lattice structure 

[80]. The authors have recrystallized the SbpA monomers on a silicon surface and after 10 

min of heat treatment at 70°C, they observed the loss of SL structures by scanning force 

microscopy. The SL regular lattice arrangements were completely lost which was an 

irreversible denaturation process. In line with this publication, I observed the loss of in vivo 

fluorescent SL structures after the heat treatment.  

 

eGFP was found to be quite stable after incubation at 100°C for 2 or 6 days. Since eGFP is 

composed of a barrel structure consisting of 11 β-strands [73], this makes the protein compact 

and quite stable against proteolytic degradation as well as against heat treatment. Although I 

could not observe the in-vivo SL-eGFP structures any more, I could still detect the proteins 

with anti-GFP antibodies. Most probably, the heat treatment disturbed tertiary structures of 

SL-eGFP monomers and caused them to disassemble. Since eGFP is quite stable, it was still 

functional, intact and connected to the SL domain. This enabled us to detect the proteins with 

anti-GFP antibodies and to visualize the cells expressing SL-eGFP as plain fluorescent cells 

without any distinct structure comparable to only eGFP expressing cells (Fig 22). In order to 

understand the mechanism behind the thermal stabilities of SL fusion proteins, similar 

experiments can be conducted in vitro for the further investigations. Fluorescence and 

electron microscopy analyses of in vitro SL structures after and before the heat treatment can 

enable us to investigate the structural changes in micro and nano scales. If any change is 

observed, monomerization and subsequent recrystallization experiments can be conducted in 
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order to investigate whether SL proteins can recover their identical fluorescent in vitro 

structures after the heat treatment. 

 

4.3. Formation of SL Assemblies during Mitosis and Meiosis 

While investigating the in vivo SL-eGFP structures, it was observed that during mitosis, buds 

emerging from cells expressing SslA-eGFP, S13240-eGFP and eGFP got fluorescent right 

after the newly developed bud appeared. But, for mSbsC-eGFP expressing cells, the situation 

was different. The newly appearing buds were never fluorescent. This case brought us to the 

question how the mSbsC-eGFP structures are formed in vivo and how such tubular 

assemblies are transmitted to the buds during mitosis and meiosis. 

 

With this study, we report for the first time on the kinetics of the formation of recombinant 

SL assemblies in vivo during yeast cell cycle by applying live fluorescence imaging. Our 

results show that mSbsC-eGFP assemblies do not project from the mother to the daughter cell 

during budding, instead novel assemblies form independently in the buds (Fig. 23a). In all 

cases, the new SL developed from a single dot-like structure. I did not observe the parallel 

formation of several assembly structures. Our data hint at the existence of a single nucleation 

center where the in vivo self-assembly process initiates unlike the case of in vitro 

recrystallization where the self-assembly starts at multiple nucleation sites and continues until 

the formed layer meets the other layers [81]. It has been reported on the native bacterial SL 

formation process of many prokaryotes. Like in vitro recrystallization, native SL propagation 

on the outermost layers of prokaryotes occurs at multiple nucleation sites which are random 

domains [31]. Recently, Pavkov et al. [25] have studied formation of SbsC layer on the 

outermost layer of B. stearothermophilus. They showed that SbsC consists of six domains 

connected with short flexible linkers which involve in introduction of dislocations and 

disclinations required for the continuous growth of SL arrays on the cell surface which starts 

at multiple nucleation points. 

 

SL assemblies are composed of monomeric subunits. Monomers should interact with each 

other first to form dimmers, then oligomers, and finally a polymer. Time-lapse microscopy 

revealed that a focal assembly structure gave rise to a growing tube-like structure that 

eventually changed its position and bent, leading to a more complex branched structure (Fig. 

23b). Recrystallization of the recombinant S-layer monomers in vitro resulted in the 
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synchronous formation of several tube-like structures of similar size and structure as in vivo. 

This different behavior under in vivo and in vitro conditions may result either from 

considerable differences in the concentration of recombinant SL proteins expressed by yeast 

cells (or available in the in vitro recrystallization environment) or from the presence/absence 

of cellular components that initiate SL-assembly. Understanding the molecular mechanisms 

underlying the nucleation, interaction of monomers and expansion of the SL assemblies in the 

yeast cytosol may offer novel strategies for applying recombinant SL in nanobiotechnology. 

 

In order to see how mSbsC-eGFP assemblies are formed and transmitted during meiosis, I 

crossed S. cerevisiae BY4741 (MATa) cells expressing mSbsC-eGFP and the mating partner 

S. cerevisiae BY4742 (MATα) cells. Similar to mitosis, diploid cells expressed mSbsC-eGFP 

fusion protein independently (Fig. 24). Unlike the budding case where mSbsC-eGFP tubes 

were not projected to the newly developed bud, during the cell fusion in meiosis, SL fusion 

protein expressed by S. cerevisiae BY4741 (MATa) extended towards the mating partner 

BY4742 (MATα) that was not having the corresponding plasmid expressing mSbsC-eGFP 

(Fig. 24 & Fig. 25). In S. cerevisiae, cell fusion starts by the septum degradation which 

involves the decomposition of the cell wall mediated by α-pheromone. Degradation of 

septum causes membrane conjugation and mixing of the cytoplasmic contents [82]. Thus, 

after the cell fusion, the resulting diploid zygotes continued to express mSbsC-eGFP fusion 

proteins by using the recombinant plasmids leading to the further progression of SL tubes 

towards the untransformed mating partner.  

 

Contrary to the situation in vegetative yeast cells, our data indicate that SL assemblies can be 

transmitted from a sporulating diploid cell to the resulting ascospores. In the majority of 

tetrads, all four spores exhibited fluorescent SL assemblies, often with a denser network in 

one of the spores (Fig. 27). Only in a minority of the analyzed tetrads three or two of the 

spores possessed fluorescent structures. As spores are metabolically inert forms of yeasts 

[83], it is very unlikely that the SL structures originated from newly synthesized and 

assembled SL proteins. Instead I favor the idea that the pre-existing tubular network in the 

diploid cell is split during spore formation, with a high likelihood that all resulting spores 

obtain fragments.  
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4.4. Colocalization Studies 

Live fluorescence microscopy imaging of yeast cells during mitosis and meiosis showed that 

mSbsC-eGFP tube-like structures were not projected from mother cells to the daughter cells. 

We questioned how such assemblies were forming in vivo. If the monomers were using the 

cytoplasmic elements as templates or assembly surfaces as they use SCWP of the bacterial 

cell wall, what were these templates? These questions brought us to the topic of in vivo 

localization of SL structures and their interactions with the cytoplasmic elements. For this 

purpose, I studied first the association of mSbsC-tRFP assemblies with yeast microtubules 

which are forming the yeast cytoskeleton with actin patches and filaments. Secondly, I 

investigated the interaction of mSbsC-eGFP structures with actin network and the last target 

was the nuclear region and mitochondrial network.   

 

Since microtubules are also tubular assemblies like in vivo mSbsC-tRFP structures, the first 

target for colocalization was microtubules which were visualized by expressing the α-tubulin 

tagged with YFP. It has been recently reported on spindle microtubule dynamics in living 

budding yeast cells by visualizing the mictotubules during mitosis [84].  Microtubules were 

observed during mitosis by expressing the major α-tubulin (Tub1) with GFP tag. Spindle 

movement was watched at different stages of mitosis by live microscopy imaging, i.e. spindle 

elongation towards the daughter cell during the late anaphase. I could not observe any 

colocalization between SLs and microtubules neither in cells with buds nor without buds 

(Fig.28). This observation is in accordance with live cell imaging results where I did not 

observe any projection of SLs towards the daughter cells. On the other hand, microtubules 

were observed to elongate towards the newly born bud in order to provide chromosome 

segregation (Fig 28, second row). 

 

Actin networking is necessary for the cell polarization and transportation of the cell 

compartments during the cell cycle [64]. Since they are composed of tube-like filaments (Fig. 

12b), I investigated the possible association of mSbsC-eGFP structures with the actin 

cytoskeleton. The data provided no indication for an association of the SL structures with the 

actin filaments (Fig. 29). However, I noticed a few focal points, where mSbsC-eGFP and 

actin fluorescence overlap. While we can not exclude the possibility of a coincidental 

localization of the two structures, this observation could also hint at the possibility that SL 

self-assembly is initiated at a specific site along the actin cytoskeleton and proceeds in the 
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cytosol without any template. Staining of DNA with DAPI gave no hint for association of the 

tubular SL structures with the nuclei or mitochondria in either budding or not budding cells 

(Fig. 30).  

 

It was previously reported that SL assembly takes place by the surface localization of 

previously synthesized SL monomers in many bacteria [85]. Doran et al. [85] showed that 

Azotobacter vinelandii, which are Gram-negative bacteria, could not form their native SL 

upon cultivation in media lacking Ca2+ ions; when the media were supplemented with Ca2+, 

SL formation was mediated. These data demonstrated the necessity of Ca2+ ions for the in 

vivo SL monomer self-assembly process on native cells. Our colocalization results showed 

that in vivo expressed mSbsC-eGFP tube-like assemblies did not show any association with 

yeast cytoskeletal elements: actin and microtubules or mitochondrial network implying that 

the SL monomers did not use them as a template for self-assembly. In line with the previous 

findings of SL assembly dependence on Ca2+ ions, we can make such a hypothesis: Since 

yeast cytoplasm is rich in Ca2+ ions [86], mSbsC-eGFP monomers self-assembled first into 

monolayers, then they bend because the monolayers were not fixed onto a surface namely 

negatively charged SCWP which are the original templates of SbsC where the monomers are 

bound by electrostatic interactions [25]. However, the question still remains: what do mSbsC-

eGFP monomers use as a template for the initiation of nucleation in vivo? In this study, it has 

been shown that in vivo self-assembly process of mSbsC-eGFP initiates at a possible single 

nucleation point. Moreover, colocalization experiments revealed that the SL fusion proteins 

were not associating with actin and tubulin cytoskeleton elements or with nucleus and 

mitochondria. Interaction of SL proteins with other cellular components and in vitro 

nucleation initiation of recrystallized SL proteins can be further investigated by analytical and 

microscopical techniques. Control over the nucleation initiation process could enable us to 

build regular SL arrays or tube-like structures on surfaces or in solutions with a programmed 

manner.  

 

4.5. In vitro Recrystallization 

SL proteins can self-assemble into flat sheets, open ended cylinders, or spheres on solid 

substrates or in solutions making them appealing for biotechnological applications [3]. These 

assemblies can be monomerized by chaotropic agents, and upon the removal of the chemical 

SL subunits can recrystallize into regular protein arrays [10]. The self-assembly process and 
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the resulting structures of SL proteins depend on various parameters like temperature, ionic 

strength, and protein concentration [18]. In this study, mSbsC-eGFP fusion protein was 

expressed in S. cerevisiae cells and, the self-assembly process and self-assembly products 

were investigated in vivo and in vitro. 

 

In our case study, the average cell diameter of S. cerevisiae was in the range of 3-5 µm. In 

vivo mSbsC-eGFP tube lengths varied from 0.78 µm to 5.06 µm, with an average of 2.49 µm. 

The average in vivo diameter was 0.3 µm. In order to see if in vivo tube-like mSbsC-eGFP 

structures would be maintained outside the cells (in situ), I burst the S. cerevisiae cells by 

osmotic shock. After burst of the cells, the average in situ tube length was 1.69 µm. The 

shortest tube was 0.66 µm and the longest was 4.77 µm. Tubular structures were retained, 

however slightly shorter than those observed in vivo. Most probably, the change of the ionic 

strength upon the osmotic lysis of the cells leads to a partial disassembly of the in vivo 

structures from the network into shorter tubes. Following the monomerization process, SL 

proteins were dialyzed in order to see if tubular fluorescent assemblies would be obtained 

again. mSbsC-eGFP monomers were able to self-assemble in vitro into fluorescent tubes 

demonstrating that eGFP did not interfere with the in vitro self-assembly process (Fig. 32). 

When I conducted the same recrystallization experiment in the presence of glass surfaces, 

instead of tube-like assemblies, fluorescent multi-layers formed (Fig. 38). Most probably, 

monomers preferred binding on the glass surface and interact with each other to form layers 

of proteins attached to the solid substrate than forming free layers in solution which would 

bend by electrostatic or hydrophobic interactions resulting in the formation of tubes.  

 

The same recrystallization experiment was performed for S13240-eGFP and SslA-eGFP 

expressing cells. The corresponding cells were first spheroplasted, burst with osmotic shock, 

monomerized and recrystallized in vitro. Hollow-like fibrillar in vivo network structures of 

S13240-eGFP were maintained in situ following the osmotic shock. In vitro recrystallization 

upon dialysis of SL monomers resulted in the formation of same fluorescent fibrillar 

aggregates (Fig. 33) as well as in the formation of folded layers (Fig. 37). Although SbsC and 

S13240 monomers can form assemblies with oblique symmetries [69], they formed different 

structures in vivo and in vitro. This could have resulted from differences in monomer-

monomer interactions caused by the aa contents. Until now, only the tertiary structure of 

SbsC was explored [25]. Pavkov et al. [25] have reported that SbsC is composed of six 

separate domains. Domain I (aa31-260) contains mostly positively charged and aromatic side 
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chains, which mediate the binding to negatively charged SCWP. The remaining domains 

together with the C-terminal part are responsible for the monomer-monomer interactions. 

Since the remaining domains have different aa compositions in S13240 [69], it is possible to 

have altered monomer-monomer interactions resulting in the formation of fibrillar networks 

rather than tube-like assemblies in vitro. On the other hand, SslA forms assemblies with 

tetragonal symmetry [70]. In vivo expression of SslA-eGFP led to the formation of 

fluorescent patches which were maintained in situ after the osmotic shock (Fig. 34). Unlike 

the other SL-eGFP constructs, I could not observe the same patches after the in vitro 

recrystallization process. Rather, I observed finer patches and tube-like assemblies most 

probably because of changes in environmental conditions like ionic strength.  

 

4.6. Influence of Calcium Concentration, pH and Dialysis Time on 

in vitro Recrystallization Process of mSbsC-eGFP Monomers 

Doran et al. [85] showed that Azotobacter vinelandii, which are Gram-negative bacteria, did 

not form their native SL upon cultivation in media lacking Ca2+ ions. When the media were 

supplemented with Ca 2+, SL formation was favored. These data demonstrated the necessity 

of Ca2+ ions for the in vivo SL monomer self-assembly process on native cells. Györvary et 

al. [87] have investigated the effect of calcium ions on the in vitro self-assembly process of 

SbpA (SL protein of B. sphaericus CCM 2177) on silicon surfaces. They concluded that 

calcium is not only required for the protein-protein interactions between the monomers, but 

also for the attachment of the proteins to the surfaces. Despite the importance and role of 

calcium in SL assembly has been mentioned, no data are currently available how calcium 

affects the mSbsC-eGFP fusion protein recrystallization behavior. In this study it is shown 

that mSbsC-eGFP tubular assembly formation did not occur in the absence of calcium due to 

the inefficient protein-protein interactions between the SL subunits (Fig. 39). In line with the 

previous observations [85, 87], we suggest that calcium ions may be binding to specific sites 

of the SL monomers and change the conformation of the protein in a way that suitable sites 

for monomer-monomer interactions are provided. In the presence of excess amounts of 

calcium, this process may be interfered by unspecific binding of Ca2+ to the monomers 

making them inactive binding partners. 

 

As the theoretical isoelectric point of mSbsC-eGFP is 5.51, the protein has different net 

charges at the different tested pH values. As the pH of the environment rises above the pI of a 
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protein, it possesses a net negative charge and is expected to have a stronger affinity for Ca2+ 

binding. In line with this prediction, I observed longer tubes upon increasing the pH (Table 

3). Due to the time dependency of crystal growth [88], the length of mSbsC-eGFP in vitro 

crystals also increased with the time of dialysis. These findings can be applied in 

nanobiotechnology to control the in vitro self-assembly process of SL proteins on surfaces or 

in solutions for the development of uniformly directed templates or novel structures.  

 

4.7. Metallization of mSbsC-eGFP Tubes with Platinum 

Mertig et al. [49] have utilized the SL protein of Sporocarcina ureae as a template to 

chemically deposit platinum clusters. They observed the formation of highly ordered arrays 

of Pt clusters. It was concluded that the localization, size and the metal lattice growth of Pt 

particles were determined by the underlying SL protein template. Recently, Wahl et al. [72] 

have reported on the electron-beam induced formation of regular nanoparticle arrays of Pt 

and Pd on the SL of B. sphaericus NCTC 9602. In this study, I investigated the chemical 

deposition of Pt on in vitro recrystallized mSbsC-eGFP tubes. As shown in Fig. 44, I was 

able to produce SL tubes smoothly coated by Pt. Such metalized protein nanotubes could be 

used in conductive nanocircuit technologies as nanowires. 

 

I conducted the metallization experiments at different temperatures in order to see the effect 

of ambient temperature on the chemical reduction of Pt2+. I observed the formation of metal 

clusters at RT after 4 h of reaction. On the other hand I could not see any metal deposition on 

SL proteins at 4°C. It has been reported that most of the metal reduction reactions are 

endothermic [89]. In other words, the reaction needs to absorb energy from the environment. 

Since endothermic reaction rates decrease as the environmental temperature is reduced. When 

our experimental temperature dropped from RT to 4°C, the reduction reaction rate decreased 

dramatically so that no metal deposition occurred after 4 h of reaction time.  

 

Interestingly, the metallization provided information about how these tube-like structures are 

formed. The metalized SL structure shown in Fig. 42 & Fig. 44 nicely reveals that the tube-

like structures result from folded layers. Recently, Pavkov et al. [25] have investigated the 

structure and binding characteristics of SbsC. They reported that SbsC is composed of six 

separate domains connected by short flexible linkers. Domain I (aa31-260) is mostly 

composed of positively charged and aromatic side chains, which mediate the binding to 
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negatively charged SCWP. The remaining domains together with the C-terminal part are 

responsible for the monomer-monomer interactions. In the absence of SCWP inside the yeast 

cells or in the dialysis buffer, SL monomers may interact with each other to form monolayers 

that are not fixed on a surface. Bending of the SL under this condition may initiate the 

formation of folds. Bending of SL arrays which is also required on the bacterial cell surface 

for maintaining a closed lattice arrangement is most probably caused by flexible linkers. Such 

linkers were reported to be involved in introduction of dislocations and disclinations needed 

for the continuous growth of SL arrays on the cell surface [25]. 

 

mSbsC-eGFP assemblies were not detectable in brightfield, most probably due to their 

thinness. However, after metallization the tubes could be visualized with brightfield due to 

the increased contrast and thickness caused by the metal coats. In line with this, the 

brightfield signal was enhanced when the metal concentration increased. Interestingly, the 

metalized samples were no longer fluorescent. Probably the loss of fluorescence was caused 

by the bound metal ions or the deposited metal layers either directly to the chromophore 

region or the domain surrounding it affecting the proper folding of the chromophore which is 

constituted by three amino acid residues at positions 65-66-67 (Ser-Tyr-Gly) [73].  

 

Metallized SL-assemblies may be used as nanowires in nanobiotechnological applications. 

Chemical deposition of further metals, i.e. Au, Ag or Pd on SL structures can be investigated 

and eventually optimized. Combining SLs with novel tags, i.e. mineralization domains may 

widen the technical application of SL proteins. 
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V. Summary 
In numerous Gram-negative and Gram-positive bacteria as well as in Archaea SL proteins 

form the outermost layer of the cell envelope. SL (glyco)monomers self-assemble with 

oblique (p2), tetragonal (p4), or hexagonal (p3, p6) symmetries [12]. SL subunits interact 

with each other and with the underlying cell surface by relatively weak non-covalent forces 

such as hydrogen-bonds, ionic bonds, salt-bridges or hydrophobic interactions. This makes 

them easy to isolate by applying chaotropic agents like urea and guanidine hydrochloride 

(GuHCl), chelating chemicals, or by changing the pH of the environment [10]. Upon dialysis 

in an ambient buffer monomers recrystallize into regular arrays that possess the forms of flat 

sheets, open ended cylinders, or spheres on solid substrates, at air-water intefaces and on lipid 

films, making them appealing for nanobiotechnological applications [3, 18]. The aim of this 

study was to investigate the structure, thermal stability, in vivo self-assembly process, 

recrystallization and metallization of three different recombinant SL proteins (SslA-eGFP, 

mSbsC-eGFP and S13240-eGFP) expressed in yeast S. cerevisiae BY4741 which could be 

further used in nanobiotechnological applications. 

 

In order to fulfill this aim, I investigated the in vivo expression of SL proteins (SslA, SbsC, 

S13240) tagged with eGFP (SL-eGFP) in the yeast S. cerevisiae BY4141. First, I 

characterized the heterologous expression of SL fusion constructs with growth and 

fluorescence measurements combined with Western blot analyses. Fluorescence microscopy 

investigations of overnight grown cultures showed that SslA-eGFP fusion protein was 

expressed as fluorescent patches, mSbsC-eGFP as tubular networks, and S13240-eGFP as 

hollow-like fibrillar network structures, while eGFP did not show any distinct structure 

Thermal stability of in vivo expressed SL-eGFP fusion proteins were investigated by 

fluorescence microscopy and immunodetection. 

 

In vivo self-assembly kinetics during mitosis and meiosis was the second main issue. In 

parallel, association of in vivo mSbsC-eGFP structures with the cellular components was of 

interest. A network of tubular structures in the cytosol of the transformed yeast cells that did 

not colocalize with microtubules or the actin cytoskeleton was observed. Time-resolved 

analysis of the formation of these structures during vegetative growth and sporulation was 

investigated by live fluorescence microscopy. While in meiosis ascospores seemed to receive 

assembled structures from the diploid cells, during mitosis surface layer structures were 
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formed de novo in the buds. Surface layer assembly always started with the appearance of a 

dot-like structure in the cytoplasm, suggesting a single nucleation point.  

 

In order to get these in vivo SL assemblies stably outside the cells (in situ), cell distruption 

experiments were conducted. The tubular structures formed by the protein in vivo were 

retained upon bursting the cells by osmotic shock; however their average length was 

decreased. During dialysis, monomers obtained by treatment with chaotropic agents 

recrystallized again to form tube-like structures. This process was strictly dependent on 

calcium ions, with an optimal concentration of 10 mM. Further increase of the Ca2+ 

concentration resulted in multiple non-productive nucleation points. It was further shown that 

the lengths of the S-layer assemblies increased with time and could be controlled by pH. 

After 48 hours the average length at pH 9.0 was 4.13 µm compared to 2.69 µm at pH 5.5. 

Successful chemical deposition of platinum indicates the potential of recrystallized mSbsC-

eGFP structures for nanobiotechnological applications. For example, such metalized protein 

nanotubes could be used in conductive nanocircuit technologies as nanowires. 
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