66 research outputs found

    Arvopaperilainaus

    Get PDF

    Aerosol climate feedback due to decadal increases in Southern Hemisphere wind speeds

    Get PDF
    Observations indicate that the westerly jet in the Southern Hemisphere troposphere is accelerating. Using a global aerosol model we estimate that the increase in wind speed of 0.45 + /- 0.2 m s(-1) decade(-1) at 50-65 degrees S since the early 1980s caused a higher sea spray flux, resulting in an increase of cloud condensation nucleus concentrations of more than 85% in some regions, and of 22% on average between 50 and 65 degrees S. These fractional increases are similar in magnitude to the decreases over many northern hemisphere land areas due to changes in air pollution over the same period. The change in cloud drop concentrations causes an increase in cloud reflectivity and a summertime radiative forcing between at 50 and 65 degrees S comparable in magnitude but acting against that from greenhouse gas forcing over the same time period, and thus represents a substantial negative climate feedback. However, recovery of Antarctic ozone depletion in the next two decades will likely cause a fall in wind speeds, a decrease in cloud drop concentration and a correspondingly weaker cloud feedback

    Impacts of sea spray geoengineering on ocean biogeochemistry

    Get PDF
    We used an earth system model of intermediate complexity to study the effects of Solar Radiation Management (SRM) by sea spray geoengineering on ocean biogeochemistry. SRM slightly decreased global ocean net primary productivity (NPP) relative to the control run. The lower temperatures in the SRM run decreased NPP directly but also indirectly increased NPP in some regions due to changes in nutrient availability resulting from changes in ocean stratification and circulation. Reduced light availability had a minor effect on global total NPP but a major regional effect near the nutrient rich upwelling region off the coast of Peru, where light availability is the main limiting factor for phytoplankton growth in our model. Unused nutrients from regions with decreased NPP also fueled NPP elsewhere. In the context of RCP4.5 simulation used here, SRM decreased ocean carbon uptake due to changes in atmospheric CO2 concentrations, seawater chemistry, NPP, temperature, and ocean circulation

    Cloud condensation nuclei production associated with atmospheric nucleation : a synthesis based on existing literature and new results

    Get PDF
    This paper synthesizes the available scientific information connecting atmospheric nucleation with subsequent cloud condensation nuclei (CCN) formation. We review both observations and model studies related to this topic, and discuss the potential climatic implications. We conclude that CCN production associated with atmospheric nucleation is both frequent and widespread phenomenon in many types of continental boundary layers, and probably also over a large fraction of the free troposphere. The contribution of nucleation to the global CCN budget spans a relatively large uncertainty range, which, together with our poor understanding of aerosol-cloud interactions, results in major uncertainties in the radiative forcing by atmospheric aerosols. In order to better quantify the role of atmospheric nucleation in CCN formation and Earth System behavior, more information is needed on (i) the factors controlling atmospheric CCN production and (ii) the properties of both primary and secondary CCN and their interconnections. In future investigations, more emphasis should be put on combining field measurements with regional and large-scale model studies.Peer reviewe
    • …
    corecore