432 research outputs found

    The use of mobile phones for skin tumor screening

    Get PDF
    A lot of importance is attributed to mobile telemedicine these days, a topic that encompasses a wide and ever growing range of applications. Small, handheld devices such as camera mobile phones have come into every day use providing technically sophisticated tasks on a user-friendly level and can therefore be easily used in various fields of telemedicine. Dermatology is a perfect candidate for the use of telemedicine tools in general, as well as mobile devices in particular. The unique aspect of mobile teledermatology is that this system represents a filtering, or triage system, allowing a sensitive approach for the management of patients with emergent skin diseases. In order to investigate the feasibility of teleconsultation using a new generation of cellular phones, a clinical study to evaluate the accuracy of online diagnosis of skin tumours was conducted. Teledermoscopy represents a recent development of teledermatology that might add up additional information in the diagnosis of pigmented skin lesions. Teledermatology, mobile as well as stationary, can advance the reliability of diagnosis by expert consultations without expensive and time-consuming relocations. Consequently, the quality of patient's care can be raised and the costs of the health care system can be reduced

    Momentum constraint relaxation

    Full text link
    Full relativistic simulations in three dimensions invariably develop runaway modes that grow exponentially and are accompanied by violations of the Hamiltonian and momentum constraints. Recently, we introduced a numerical method (Hamiltonian relaxation) that greatly reduces the Hamiltonian constraint violation and helps improve the quality of the numerical model. We present here a method that controls the violation of the momentum constraint. The method is based on the addition of a longitudinal component to the traceless extrinsic curvature generated by a vector potential w_i, as outlined by York. The components of w_i are relaxed to solve approximately the momentum constraint equations, pushing slowly the evolution toward the space of solutions of the constraint equations. We test this method with simulations of binary neutron stars in circular orbits and show that effectively controls the growth of the aforementioned violations. We also show that a full numerical enforcement of the constraints, as opposed to the gentle correction of the momentum relaxation scheme, results in the development of instabilities that stop the runs shortly.Comment: 17 pages, 10 figures. New numerical tests and references added. More detailed description of the algorithms are provided. Final published versio

    Recoil velocities from equal-mass binary black-hole mergers: a systematic investigation of spin-orbit aligned configurations

    Full text link
    Binary black-hole systems with spins aligned with the orbital angular momentum are of special interest, as studies indicate that this configuration is preferred in nature. If the spins of the two bodies differ, there can be a prominent beaming of the gravitational radiation during the late plunge, causing a recoil of the final merged black hole. We perform an accurate and systematic study of recoil velocities from a sequence of equal-mass black holes whose spins are aligned with the orbital angular momentum, and whose individual spins range from a = +0.584 to -0.584. In this way we extend and refine the results of a previous study and arrive at a consistent maximum recoil of 448 +- 5 km/s for anti-aligned models as well as to a phenomenological expression for the recoil velocity as a function of spin ratio. This relation highlights a nonlinear behavior, not predicted by the PN estimates, and can be readily employed in astrophysical studies on the evolution of binary black holes in massive galaxies. An essential result of our analysis is the identification of different stages in the waveform, including a transient due to lack of an initial linear momentum in the initial data. Furthermore we are able to identify a pair of terms which are largely responsible for the kick, indicating that an accurate computation can be obtained from modes up to l=3. Finally, we provide accurate measures of the radiated energy and angular momentum, finding these to increase linearly with the spin ratio, and derive simple expressions for the final spin and the radiated angular momentum which can be easily implemented in N-body simulations of compact stellar systems. Our code is calibrated with strict convergence tests and we verify the correctness of our measurements by using multiple independent methods whenever possible.Comment: 24 pages, 15 figures, 5 table

    Gauge conditions for long-term numerical black hole evolutions without excision

    Get PDF
    Numerical relativity has faced the problem that standard 3+1 simulations of black hole spacetimes without singularity excision and with singularity avoiding lapse and vanishing shift fail after an evolution time of around 30-40M due to the so-called slice stretching. We discuss lapse and shift conditions for the non-excision case that effectively cure slice stretching and allow run times of 1000M and more.Comment: 19 pages, 14 figures, REVTeX, Added a missing Acknowledgmen

    Binary black hole merger in the extreme mass ratio limit

    Get PDF
    We discuss the transition from quasi-circular inspiral to plunge of a system of two nonrotating black holes of masses m1m_1 and m2m_2 in the extreme mass ratio limit m1m2(m1+m2)2m_1m_2\ll (m_1+m_2)^2. In the spirit of the Effective One Body (EOB) approach to the general relativistic dynamics of binary systems, the dynamics of the two black hole system is represented in terms of an effective particle of mass μm1m2/(m1+m2)\mu\equiv m_1m_2/(m_1+m_2) moving in a (quasi-)Schwarzschild background of mass Mm1+m2M\equiv m_1+m_2 and submitted to an O(μ){\cal O}(\mu) radiation reaction force defined by Pad\'e resumming high-order Post-Newtonian results. We then complete this approach by numerically computing, \`a la Regge-Wheeler-Zerilli, the gravitational radiation emitted by such a particle. Several tests of the numerical procedure are presented. We focus on gravitational waveforms and the related energy and angular momentum losses. We view this work as a contribution to the matching between analytical and numerical methods within an EOB-type framework.Comment: 14 pages, six figures. Revised version. To appear in the CQG special issue based around New Frontiers in Numerical Relativity conference, Golm (Germany), July 17-21 200

    Highly efficient polymer solar cells cast from non-halogenated xylene/anisaldehyde solution

    Get PDF
    Several high performance polymer:fullerene bulk-heterojunction photo-active layers, deposited from the non-halogenated solvents o-xylene or anisole in combination with the eco-compatible additive p-anisaldehyde, are investigated. The respective solar cells yield excellent power conversion efficiencies up to 9.5%, outperforming reference devices deposited from the commonly used halogenated chlorobenzene/1,8-diiodooctane solvent/additive combination. The impact of the processing solvent on the bulk-heterojunction properties is exemplified on solar cells comprising benzodithiophene-thienothiophene co-polymers and functionalized fullerenes (PTB7:PC71BM). The additive p-anisaldehyde improves film formation, enhances polymer order, reduces fullerene agglomeration and shows high volatility, thereby positively affecting layer deposition, improving charge carrier extraction and reducing drying time, the latter being crucial for future large area roll-to-roll device fabrication. © The Royal Society of Chemistry 2015

    Are moving punctures equivalent to moving black holes?

    Get PDF
    When simulating the inspiral and coalescence of a binary black-hole system, special care needs to be taken in handling the singularities. Two main techniques are used in numerical-relativity simulations: A first and more traditional one ``excises'' a spatial neighbourhood of the singularity from the numerical grid on each spacelike hypersurface. A second and more recent one, instead, begins with a ``puncture'' solution and then evolves the full 3-metric, including the singular point. In the continuum limit, excision is justified by the light-cone structure of the Einstein equations and, in practice, can give accurate numerical solutions when suitable discretizations are used. However, because the field variables are non-differentiable at the puncture, there is no proof that the moving-punctures technique is correct, particularly in the discrete case. To investigate this question we use both techniques to evolve a binary system of equal-mass non-spinning black holes. We compare the evolution of two curvature 4-scalars with proper time along the invariantly-defined worldline midway between the two black holes, using Richardson extrapolation to reduce the influence of finite-difference truncation errors. We find that the excision and moving-punctures evolutions produce the same invariants along that worldline, and thus the same spacetimes throughout that worldline's causal past. This provides convincing evidence that moving-punctures are indeed equivalent to moving black holes.Comment: 4 pages, 3 eps color figures; v2 = major revisions to introduction & conclusions based on referee comments, but no change in analysis or result

    A Tapestry Of Educational Technology Women Leaders In Higher Education: A Qualitative Study

    Get PDF
    A qualitative study was used to understand the experiences of 12 women, leaders in Education Technology in higher education. Through interviews, women leaders described their environment as well as personal and behavioral aspects of their work. Findings revealed four threads of descriptive concepts including relationships, leadership, persistence, and advice. Relationships were from workplaces and professional networks. Leadership was defined by vision and teamwork. Persistence was addressed as either values-based or relationship-based. The fourth thread in the findings, advice, was divided into three sub-threads: education, family (both personal and work), and managing emotions. A qualitative approach was used to highlight interview responses to demonstrate the experiences of women leaders in Education Technology in Higher Education

    Velocity-space sensitivity of the time-of-flight neutron spectrometer at JET

    Get PDF
    The velocity-space sensitivities of fast-ion diagnostics are often described by so-called weight functions. Recently, we formulated weight functions showing the velocity-space sensitivity of the often dominant beam-target part of neutron energy spectra. These weight functions for neutron emission spectrometry (NES) are independent of the particular NES diagnostic. Here we apply these NES weight functions to the time-of-flight spectrometer TOFOR at JET. By taking the instrumental response function of TOFOR into account, we calculate time-of-flight NES weight functions that enable us to directly determine the velocity-space sensitivity of a given part of a measured time-of-flight spectrum from TOFOR
    corecore