17 research outputs found

    Addressing climate change with behavioral science: a global intervention tournament in 63 countries

    Get PDF
    Effectively reducing climate change requires marked, global behavior change. However, it is unclear which strategies are most likely to motivate people to change their climate beliefs and behaviors. Here, we tested 11 expert-crowdsourced interventions on four climate mitigation outcomes: beliefs, policy support, information sharing intention, and an effortful tree-planting behavioral task. Across 59,440 participants from 63 countries, the interventions’ effectiveness was small, largely limited to nonclimate skeptics, and differed across outcomes: Beliefs were strengthened mostly by decreasing psychological distance (by 2.3%), policy support by writing a letter to a future-generation member (2.6%), information sharing by negative emotion induction (12.1%), and no intervention increased the more effortful behavior—several interventions even reduced tree planting. Last, the effects of each intervention differed depending on people’s initial climate beliefs. These findings suggest that the impact of behavioral climate interventions varies across audiences and target behaviors

    Addressing climate change with behavioral science:A global intervention tournament in 63 countries

    Get PDF

    Design Principles for 2-Dimensional Molecular Aggregates using Kasha’s Model: Tunable Photophysics in Near and Shortwave Infrared

    No full text
    Technologies which utilize near-infrared (700 – 1000 nm) and short-wave infrared (1000 – 2000 nm) electromagnetic radiation have applications in deep-tissue imaging, telecommunications and satellite telemetry due to low scattering and decreased background signal in this spectral region. It is therefore necessary to develop materials that absorb light efficiently beyond 1000 nm. Transition dipole moment coupling (e.g. J-aggregation) allows for redshifted excitonic states and provides a pathway to highly absorptive electronic states in the infrared. We present aggregates of two cyanine dyes whose absorption peaks redshift dramatically upon aggregation in water from ~800 nm to 1000 nm and 1050 nm respectively with sheet-like morphologies and high molar absorptivities (e ~ 105 M-1cm-1). We use Frenkel exciton theory to extend Kasha’s model for J and H aggregation and describe the excitonic states of 2-dimensional aggregates whose slip is controlled by steric hindrance in the assembled structure. A consequence of the increased dimensionality is the phenomenon of an intermediate “I-aggregate”, one which redshifts yet displays spectral signatures of band-edge dark states akin to an H-aggregate. We distinguish between H-, I- and J-aggregates by showing the relative position of the bright (absorptive) state within the density of states using temperature dependent spectroscopy. I-aggregates hold potential for applications as charge injection moieties for semiconductors and donors for energy transfer in NIR and SWIR. Our results can be used to better design chromophores with predictable and tunable aggregation with new photophysical properties

    Temperate and boreal forest tree phenology: from organ-scale processes to terrestrial ecosystem models

    Get PDF
    International audienceAbstractKey messageWe demonstrate that, beyond leaf phenology, the phenological cycles of wood and fine roots present clear responses to environmental drivers in temperate and boreal trees. These drivers should be included in terrestrial ecosystem models.ContextIn temperate and boreal trees, a dormancy period prevents organ development during adverse climatic conditions. Whereas the phenology of leaves and flowers has received considerable attention, to date, little is known regarding the phenology of other tree organs such as wood, fine roots, fruits, and reserve compounds.AimsHere, we review both the role of environmental drivers in determining the phenology of tree organs and the models used to predict the phenology of tree organs in temperate and boreal forest trees.ResultsTemperature is a key driver of the resumption of tree activity in spring, although its specific effects vary among organs. There is no such clear dominant environmental cue involved in the cessation of tree activity in autumn and in the onset of dormancy, but temperature, photoperiod, and water stress appear as prominent factors. The phenology of a given organ is, to a certain extent, influenced by processes in distant organs.ConclusionInferring past trends and predicting future trends of tree phenology in a changing climate requires specific phenological models developed for each organ to consider the phenological cycle as an ensemble in which the environmental cues that trigger each phase are also indirectly involved in the subsequent phases. Incorporating such models into terrestrial ecosystem models (TEMs) would likely improve the accuracy of their predictions. The extent to which the coordination of the phenologies of tree organs will be affected in a changing climate deserves further research

    Addressing climate change with behavioral science::A global intervention tournament in 63 countries

    No full text
    Effectively reducing climate change requires marked, global behavior change. However, it is unclear which strategies are most likely to motivate people to change their climate beliefs and behaviors. Here, we tested 11 expert-crowdsourced interventions on four climate mitigation outcomes: beliefs, policy support, information sharing intention, and an effortful tree-planting behavioral task. Across 59,440 participants from 63 countries, the interventions’ effectiveness was small, largely limited to nonclimate skeptics, and differed across outcomes: Beliefs were strengthened mostly by decreasing psychological distance (by 2.3%), policy support by writing a letter to a future-generation member (2.6%), information sharing by negative emotion induction (12.1%), and no intervention increased the more effortful behavior—several interventions even reduced tree planting. Last, the effects of each intervention differed depending on people’s initial climate beliefs. These findings suggest that the impact of behavioral climate interventions varies across audiences and target behaviors

    Addressing climate change with behavioral science: A global intervention tournament in 63 countries

    No full text
    International audienceEffectively reducing climate change requires marked, global behavior change. However, it is unclear which strategies are most likely to motivate people to change their climate beliefs and behaviors. Here, we tested 11 expert-crowdsourced interventions on four climate mitigation outcomes: beliefs, policy support, information sharing intention, and an effortful tree-planting behavioral task. Across 59,440 participants from 63 countries, the interventions’ effectiveness was small, largely limited to nonclimate skeptics, and differed across outcomes: Beliefs were strengthened mostly by decreasing psychological distance (by 2.3%), policy support by writing a letter to a future-generation member (2.6%), information sharing by negative emotion induction (12.1%), and no intervention increased the more effortful behavior—several interventions even reduced tree planting. Last, the effects of each intervention differed depending on people’s initial climate beliefs. These findings suggest that the impact of behavioral climate interventions varies across audiences and target behaviors
    corecore