978 research outputs found

    Hadronic and radiative three-body decays of J/psi involving the scalars f0(1370), f0(1500) and f0(1710)

    Full text link
    We study the role of the scalar resonances f0(1370), f0(1500) and f0(1710) in the strong and radiative three-body decays of J/psi with J/psi to V + P P (gamma gamma) and J/psi to gamma + P P (V V), where P (V) denotes a pseudoscalar (vector) meson. We assume that the scalars result from a glueball-quarkonium mixing scheme while the dynamics of the transition process is described in an effective chiral Lagrangian approach. Present data on J/psi to V + P P are well reproduced, predictions for the radiative processes serve as further tests of this scenario.Comment: 15 page

    Snapshots of the EYES project

    Get PDF
    The EYES project (IST-2001-34734) is a three years European research project on self-organizing and collaborative energy-efficient sensor networks. It addresses the convergence of distributed information processing, wireless communications, and mobile computing. The goal of the project is to develop the architecture and the technology which enables the creation of a new generation of sensors that can effectively network together so as to provide a flexible platform for the support of a large variety of mobile sensor network applications. This paper provides a broad overview of the EYES project and highlights some approaches and results of the architecture

    PREDICTION OF ANKLE JOINT TORQUES USING ARTIFICIAL NEURAL NETWORKS

    Get PDF
    Major ankle sprains in sports are thought to be due to high levels of ankle torsion. The purpose of this study was to develop a method for measuring in vivo ankle torques developed by athletes. Motion capture, force plate, and insole pressure measurements were used to develop generalized regression neural networks to predict maximum ankle torque and rate of ankle torque based on insole pressures. It was found that network prediction accuracy depended on the number of subjects used for training, as well as the method of pressure sensor grouping. Further work will be performed to determine optimal subject and pressure sensor groupings

    Magnetic characterization of superparamagnetic nanoparticles pulled through model membranes

    Get PDF
    BACKGROUND: To quantitatively compare in-vitro and in vivo membrane transport studies of targeted delivery, one needs characterization of the magnetically-induced mobility of superparamagnetic iron oxide nanoparticles (SPION). Flux densities, gradients, and nanoparticle properties were measured in order to quantify the magnetic force on the SPION in both an artificial cochlear round window membrane (RWM) model and the guinea pig RWM. METHODS: Three-dimensional maps were created for flux density and magnetic gradient produced by a 24-well casing of 4.1 kilo-Gauss neodymium-iron-boron (NdFeB) disc magnets. The casing was used to pull SPION through a three-layer cell culture RWM model. Similar maps were created for a 4 inch (10.16 cm) cube 48 MGOe NdFeB magnet used to pull polymeric-nanoparticles through the RWM of anesthetized guinea pigs. Other parameters needed to compute magnetic force were nanoparticle and polymer properties, including average radius, density, magnetic susceptibility, and volume fraction of magnetite. RESULTS: A minimum force of 5.04 × 10(-16 )N was determined to adequately pull nanoparticles through the in-vitro model. For the guinea pig RWM, the magnetic force on the polymeric nanoparticles was 9.69 × 10(-20 )N. Electron microscopy confirmed the movement of the particles through both RWM models. CONCLUSION: As prospective carriers of therapeutic substances, polymers containing superparamagnetic iron oxide nanoparticles were succesfully pulled through the live RWM. The force required to achieve in vivo transport was significantly lower than that required to pull nanoparticles through the in-vitro RWM model. Indeed very little force was required to accomplish measurable delivery of polymeric-SPION composite nanoparticles across the RWM, suggesting that therapeutic delivery to the inner ear by SPION is feasible

    The permeability of SPION over an artificial three-layer membrane is enhanced by external magnetic field

    Get PDF
    BACKGROUND: Sensorineural hearing loss, a subset of all clinical hearing loss, may be correctable through the use of gene therapy. We are testing a delivery system of therapeutics through a 3 cell-layer round window membrane model (RWM model) that may provide an entry of drugs or genes to the inner ear. We designed an in vitro RWM model similar to the RWM (will be referred to throughout the paper as RWM model) to determine the feasibility of using superparamagnetic iron oxide (Fe(3)O(4)) nanoparticles (SPION) for targeted delivery of therapeutics to the inner ear. The RWM model is a 3 cell-layer model with epithelial cells cultured on both sides of a small intestinal submucosal (SIS) matrix and fibroblasts seeded in between. Dextran encapsulated nanoparticle clusters 130 nm in diameter were pulled through the RWM model using permanent magnets with flux density 0.410 Tesla at the pole face. The SIS membranes were harvested at day 7 and then fixed in 4% paraformaldehyde. Transmission electron microscopy and fluorescence spectrophotometry were used to verify transepithelial transport of the SPION across the cell-culture model. Histological sections were examined for evidence of SPION toxicity, as well to generate a timeline of the position of the SPION at different times. SPION also were added to cells in culture to assess in vitro toxicity. RESULTS: Transepithelial electrical resistance measurements confirmed epithelial confluence, as SPION crossed a membrane consisting of three co-cultured layers of cells, under the influence of a magnetic field. Micrographs showed SPION distributed throughout the membrane model, in between cell layers, and sometimes on the surface of cells. TEM verified that the SPION were pulled through the membrane into the culture well below. Fluorescence spectrophotometry quantified the number of SPION that went through the SIS membrane. SPION showed no toxicity to cells in culture. CONCLUSION: A three-cell layer model of the human round window membrane has been constructed. SPION have been magnetically transported through this model, allowing quantitative evaluation of prospective targeted drug or gene delivery through the RWM. Putative in vivo carrier superparamagnetic nanoparticles may be evaluated using this model

    Study of the f2(1270)f_2(1270), f2(1525)f_2'(1525), f0(1370)f_0(1370) and f0(1710)f_0(1710) in the J/ψJ/\psi radiative decays

    Get PDF
    In this paper we present an approach to study the radiative decay modes of the J/ψJ/\psi into a photon and one of the tensor mesons f2(1270)f_2(1270), f2(1525)f'_2(1525), as well as the scalar ones f0(1370)f_0(1370) and f0(1710)f_0(1710). Especially we compare predictions that emerge from a scheme where the states appear dynamically in the solution of vector meson--vector meson scattering amplitudes to those from a (admittedly naive) quark model. We provide evidence that it might be possible to distinguish amongst the two scenarios, once improved data are available.Comment: The large Nc argument improved; version published in EPJA

    Direct CP violation in b -> d J/\psi decays

    Full text link
    We investigate the possibility of observing direct CP violation in self-tagging B-meson decays of the type b -> d J/\psi. The CP asymmetry can be generated due to strong or electromagnetic scattering in the final state, or due to long distance effects. The first two contributions give asymmetries of a few 10^(-3), in the standard model. The long distance effects are hard to estimate, but it cannot be excluded that they yield asymmetries of about 1%.Comment: 10 pages, Fermilab-pub-93/307-

    Study of the reaction pbar p -> phi phi from 1.1 to 2.0 GeV/c

    Get PDF
    A study has been performed of the reaction pbar p -> 4K using in-flight antiprotons from 1.1 to 2.0 GeV/c incident momentum interacting with a hydrogen jet target. The reaction is dominated by the production of a pair of phi mesons. The pbar p -> phi phi cross section rises sharply above threshold and then falls continuously as a function of increasing antiproton momentum. The overall magnitude of the cross section exceeds expectations from a simple application of the OZI rule by two orders of magnitude. In a fine scan around the xi/f_J(2230) resonance, no structure is observed. A limit is set for the double branching ratio B(xi -> pbar p) * B(xi -> phi phi) < 6e-5 for a spin 2 resonance of M = 2.235 GeV and Width = 15 MeV.Comment: 13 pages, 13 figures, 2 tables, Latex. To be published in Phys. Rev.

    Enhancing public awareness and promoting co-responsibility for marine litter in Europe: The challenge of MARLISCO

    Get PDF
    Marine litter is a pervasive and complex societal problem but has no simple solution. Inadequate practices at all levels of production–use–disposal contribute to accumulation of waste on land and at sea. Enhanced societal awareness but also co-responsibility across different sectors and improved interactions between stakeholders are necessary. MARLISCO was a European initiative, which developed and implemented activities across 15 countries. It worked towards raising societal awareness and engagement on marine litter, through a combination of approaches: public exhibitions in over 80 locations; a video competition involving 2100 students; and a legacy of educational and decision-supporting tools. 12 national participatory events designed to facilitate dialogue on solutions brought together 1500 stakeholders and revealed support for cross-cutting, preventive measures. Evaluation during implementation shows that these activities are effective in improving individuals' perceptions about the problem but also commitment in being part of the solution. This paper summarises MARLISCO's approach and highlights a selection of outcomes
    corecore