231 research outputs found

    Dependence of Galaxy Quenching on Halo Mass and Distance from its Centre

    Full text link
    We study the dependence of star-formation quenching on galaxy mass and environment, in the SDSS (z~0.1) and the AEGIS (z~1). It is crucial that we define quenching by low star-formation rate rather than by red colour, given that one third of the red galaxies are star forming. We address stellar mass M*, halo mass Mh, density over the nearest N neighbours deltaN, and distance to the halo centre D. The fraction of quenched galaxies appears more strongly correlated with Mh at fixed M* than with M* at fixed Mh, while for satellites quenching also depends on D. We present the M*-Mh relation for centrals at z~1. At z~1, the dependence of quenching on M* at fixed Mh is somewhat more pronounced than at z~0, but the quenched fraction is low (10%) and the haloes are less massive. For satellites, M*-dependent quenching is noticeable at high D, suggesting a quenching dependence on sub-halo mass for recently captured satellites. At small D, where satellites likely fell in more than a few Gyr ago, quenching strongly depends on Mh, and not on M*. The Mh-dependence of quenching is consistent with theoretical wisdom where virial shock heating in massive haloes shuts down accretion and triggers ram-pressure stripping, causing quenching. The interpretation of deltaN is complicated by the fact that it depends on the number of observed group members compared to N, motivating the use of D as a better measure of local environment.Comment: 23 pages, 13 figures, accepted by MNRA

    On the Evolution of the Velocity-Mass-Size Relations of Disk-Dominated Galaxies over the Past 10 Billion Years

    Full text link
    We study the evolution of the scaling relations between maximum circular velocity, stellar mass and optical half-light radius of star-forming disk-dominated galaxies in the context of LCDM-based galaxy formation models. Using data from the literature combined with new data from the DEEP2 and AEGIS surveys we show that there is a consistent observational and theoretical picture for the evolution of these scaling relations from z\sim 2 to z=0. The evolution of the observed stellar scaling relations is weaker than that of the virial scaling relations of dark matter haloes, which can be reproduced, both qualitatively and quantitatively, with a simple, cosmologically-motivated model for disk evolution inside growing NFW dark matter haloes. In this model optical half-light radii are smaller, both at fixed stellar mass and maximum circular velocity, at higher redshifts. This model also predicts that the scaling relations between baryonic quantities evolve even more weakly than the corresponding stellar relations. We emphasize, though, that this weak evolution does not imply that individual galaxies evolve weakly. On the contrary, individual galaxies grow strongly in mass, size and velocity, but in such a way that they move largely along the scaling relations. Finally, recent observations have claimed surprisingly large sizes for a number of star-forming disk galaxies at z \sim 2, which has caused some authors to suggest that high redshift disk galaxies have abnormally high spin parameters. However, we argue that the disk scale lengths in question have been systematically overestimated by a factor \sim 2, and that there is an offset of a factor \sim 1.4 between H\alpha sizes and optical sizes. Taking these effects into account, there is no indication that star forming galaxies at high redshifts (z\sim 2) have abnormally high spin parameters.Comment: 19 pages, 10 figures, accepted to MNRAS, minor changes to previous versio

    Cholestenoic acid, an endogenous cholesterol metabolite, is a potent γ-secretase modulator.

    Get PDF
    BackgroundAmyloid-β (Aβ) 42 has been implicated as the initiating molecule in the pathogenesis of Alzheimer's disease (AD); thus, therapeutic strategies that target Aβ42 are of great interest. γ-Secretase modulators (GSMs) are small molecules that selectively decrease Aβ42. We have previously reported that many acidic steroids are GSMs with potencies ranging in the low to mid micromolar concentration with 5β-cholanic acid being the most potent steroid identified GSM with half maximal effective concentration (EC50) of 5.7 μM.ResultsWe find that the endogenous cholesterol metabolite, 3β-hydroxy-5-cholestenoic acid (CA), is a steroid GSM with enhanced potency (EC50 of 250 nM) relative to 5β-cholanic acid. CA i) is found in human plasma at ~100-300 nM concentrations ii) has the typical acidic GSM signature of decreasing Aβ42 and increasing Aβ38 levels iii) is active in in vitro γ-secretase assay iv) is made in the brain. To test if CA acts as an endogenous GSM, we used Cyp27a1 knockout (Cyp27a1-/-) and Cyp7b1 knockout (Cyp7b1-/-) mice to investigate if manipulation of cholesterol metabolism pathways relevant to CA formation would affect brain Aβ42 levels. Our data show that Cyp27a1-/- had increased brain Aβ42, whereas Cyp7b1-/- mice had decreased brain Aβ42 levels; however, peripheral dosing of up to 100 mg/kg CA did not affect brain Aβ levels. Structure-activity relationship (SAR) studies with multiple known and novel CA analogs studies failed to reveal CA analogs with increased potency.ConclusionThese data suggest that CA may act as an endogenous GSM within the brain. Although it is conceptually attractive to try and increase the levels of CA in the brain for prevention of AD, our data suggest that this will not be easily accomplished

    Galaxy Zoo: Are Bars Responsible for the Feeding of Active Galactic Nuclei at 0.2 < z < 1.0?

    Get PDF
    We present a new study investigating whether active galactic nuclei (AGN) beyond the local universe are preferentially fed via large-scale bars. Our investigation combines data from Chandra and Galaxy Zoo: Hubble (GZH) in the AEGIS, COSMOS, and GOODS-S surveys to create samples of face-on, disc galaxies at 0.2 < z < 1.0. We use a novel method to robustly compare a sample of 120 AGN host galaxies, defined to have 10^42 erg/s < L_X < 10^44 erg/s, with inactive control galaxies matched in stellar mass, rest-frame colour, size, Sersic index, and redshift. Using the GZH bar classifications of each sample, we demonstrate that AGN hosts show no statistically significant enhancement in bar fraction or average bar likelihood compared to closely-matched inactive galaxies. In detail, we find that the AGN bar fraction cannot be enhanced above the control bar fraction by more than a factor of two, at 99.7% confidence. We similarly find no significant difference in the AGN fraction among barred and non-barred galaxies. Thus we find no compelling evidence that large-scale bars directly fuel AGN at 0.2<z<1.0. This result, coupled with previous results at z=0, implies that moderate-luminosity AGN have not been preferentially fed by large-scale bars since z=1. Furthermore, given the low bar fractions at z>1, our findings suggest that large-scale bars have likely never directly been a dominant fueling mechanism for supermassive black hole growth.Comment: 13 pages, 5 figures, 2 tables, accepted by MNRA

    Emergent stent-graft repair of a massive aortic pseudoaneurysm secondary to Behçet’s disease in a child

    Get PDF
    An 11-year-old male with vasculitis was found to have a large abdominal aortic pseudoaneurysm on diagnostic angiography. This report describes endovascular repair of the pseudoaneurysm by stent-graft exclusion. The existing literature surrounding this rare and potentially fatal condition is also reviewed

    Oxadiazole-Based Cell Permeable Macrocyclic Transition State Inhibitors of Norovirus 2CL Protease

    Get PDF
    Human noroviruses are the primary causative agents of acute gastroenteritis and a pressing public health burden worldwide. There are currently no vaccines or small molecule therapeutics available for the treatment or prophylaxis of norovirus infections. Norovirus 3CL protease plays a vital role in viral replication by generating structural and nonstructural proteins via the cleavage of the viral polyprotein. Thus, molecules that inhibit the viral protease may have potential therapeutic value. We describe herein the structure-based design, synthesis, and in vitro and cell-based evaluation of the first class of oxadiazole-based, permeable macrocyclic inhibitors of norovirus 3CL protease

    eMethylsorb: rapid quantification of DNA methylation in cancer cells on screen-printed gold electrodes

    Get PDF
    Simple, sensitive and inexpensive regional DNA methylation detection methodologies are imperative for routine patient diagnostics. Herein, we describe eMethylsorb, an electrochemical assay for quantitative detection of regional DNA methylation on a single-use and cost-effective screen-printed gold electrode (SPE-Au) platform. The eMethylsorb approach is based on the inherent differential adsorption affinity of DNA bases to gold (i.e. adenine > cytosine ≥ guanine > thymine). Through bisulfite modification and asymmetric PCR of DNA, methylated and unmethylated DNA in the sample becomes guanine-enriched and adenine-enriched respectively. Under optimized conditions, adenine-enriched unmethylated DNA (higher affinity to gold) adsorbs more onto the SPE-Au surface than methylated DNA. Higher DNA adsorption causes stronger coulombic repulsion and hinders reduction of ferricyanide [Fe(CN)]ions on the SPE-Au surface to give a lower electrochemical response. Hence, the response level is directly proportional to the methylation level in the sample. The applicability of this methodology was tested by detecting the regional methylation status in a cluster of eight CpG sites within the engrailed (EN1) gene promoter of the MCF7 breast cancer cell line. A 10% methylation level sensitivity with good reproducibility (RSD = 5.8%, n = 3) was achieved rapidly in 10 min. Furthermore, eMethylsorb also has advantages over current methylation assays such as being inexpensive, rapid and does not require any electrode surface modification. We thus believe that the eMethylsorb assay could potentially be a rapid and accurate diagnostic assay for point-of-care DNA methylation analysis

    Absence of Evidence Is Not Evidence of Absence: The Color-Density Relation at Fixed Stellar Mass Persists to z ~ 1

    Full text link
    We use data drawn from the DEEP2 Galaxy Redshift Survey to investigate the relationship between local galaxy density, stellar mass, and rest-frame galaxy color. At z ~ 0.9, we find that the shape of the stellar mass function at the high-mass (log (M*/Msun) > 10.1) end depends on the local environment, with high-density regions favoring more massive systems. Accounting for this stellar mass-environment relation (i.e., working at fixed stellar mass), we find a significant color-density relation for galaxies with 10.6 < log(M*/Msun) < 11.1 and 0.75 < z < 0.95. This result is shown to be robust to variations in the sample selection and to extend to even lower masses (down to log(M*/Msun) ~ 10.4). We conclude by discussing our results in comparison to recent works in the literature, which report no significant correlation between galaxy properties and environment at fixed stellar mass for the same redshift and stellar mass domain. The non-detection of environmental dependence found in other data sets is largely attributable to their smaller samples size and lower sampling density, as well as systematic effects such as inaccurate redshifts and biased analysis techniques. Ultimately, our results based on DEEP2 data illustrate that the evolutionary state of a galaxy at z ~ 1 is not exclusively determined by the stellar mass of the galaxy. Instead, we show that local environment appears to play a distinct role in the transformation of galaxy properties at z > 1.Comment: 10 pages, 5 Figures; Accepted for publication in MNRA

    Galaxy Zoo: Are bars responsible for the feeding of active galactic nuclei at 0.2<z<1.0?

    Get PDF
    We present a new study investigating whether active galactic nuclei (AGN) beyond the local universe are preferentially fed via large-scale bars. Our investigation combines data from Chandra and Galaxy Zoo: Hubble (GZH) in the AEGIS (All-wavelength Extended Groth strip International Survey), COSMOS (Cosmological Evolution Survey), and (Great Observatories Origins Deep Survey-South) GOODS-S surveys to create samples of face-on, disc galaxies at 0.21, our findings suggest that large-scale bars have likely never directly been a dominant fuelling mechanism for supermassive black hole growt
    • …
    corecore