7 research outputs found

    Functional microdomains in G-protein-coupled receptors: the conserved arginine-cage motif in the gonadotropin-releasing hormone receptor

    Get PDF
    An Arg present in the third transmembrane domain of all rhodopsin-like G-protein-coupled receptors is required for efficient signal transduction. Mutation of this Arg in the gonadotropin-releasing hormone receptor to Gln, His, or Lys abolished or severely impaired agonist-stimulated inositol phosphate generation, consistent with Arg having a role in receptor activation. To investigate the contribution of the surrounding structural domain in the actions of the conserved Arg, an integrated microdomain modeling and mutagenesis approach has been utilized. Two conserved residues that constrain the Arg side chain to a limited number of conformations have been identified. In the inactive wild-type receptor, the Arg side chain is proposed to form an ionic interaction with Asp3.49(138). Experimental results for the Asp3. 49(138) --> Asn mutant receptor show a modestly enhanced receptor efficiency, consistent with the hypothesis that weakening the Asp3. 49(138)-Arg3.50(139) interaction by protonation of the Asp or by the mutation to Asn favors activation. With activation, the Asp3. 49(138)-Arg3.50(139) ionic bond would break, and the unrestrained Arg would be prevented from orienting itself toward the water phase by a steric clash with Ile3.54(143). The mutation Ile3.54(143) --> Ala, which eliminates this clash in simulations, causes a marked reduction in measured receptor signaling efficiency, implying that solvation of Arg3.50(139) prevents it from functioning in the activation of the receptor. These data are consistent with residues Asp3.49(138) and Ile3.54(143) forming a structural motif, which helps position Arg in its appropriate inactive and active receptor conformations

    Novel genes identified in a high-density genome wide association study for nicotine dependence

    No full text
    Tobacco use is a leading contributor to disability and death worldwide, and genetic factors contribute in part to the development of nicotine dependence. To identify novel genes for which natural variation contributes to the development of nicotine dependence, we performed a comprehensive genome wide association study using nicotine dependent smokers as cases and non-dependent smokers as controls. To allow the efficient, rapid, and cost effective screen of the genome, the study was carried out using a two-stage design. In the first stage, genotyping of over 2.4 million single nucleotide polymorphisms (SNPs) was completed in case and control pools. In the second stage, we selected SNPs for individual genotyping based on the most significant allele frequency differences between cases and controls from the pooled results. Individual genotyping was performed in 1050 cases and 879 controls using 31 960 selected SNPs. The primary analysis, a logistic regression model with covariates of age, gender, genotype and gender by genotype interaction, identified 35 SNPs with P-values less than 10(-4) (minimum P-value 1.53 x 10(-6)). Although none of the individual findings is statistically significant after correcting for multiple tests, additional statistical analyses support the existence of true findings in this group. Our study nominates several novel genes, such as Neurexin 1 (NRXN1), in the development of nicotine dependence while also identifying a known candidate gene, the beta3 nicotinic cholinergic receptor. This work anticipates the future directions of large-scale genome wide association studies with state-of-the-art methodological approaches and sharing of data with the scientific community

    Cholinergic nicotinic receptor genes implicated in a nicotine dependence association study targeting 348 candidate genes with 3713 SNPs

    No full text
    Nicotine dependence is one of the world's leading causes of preventable death. To discover genetic variants that influence risk for nicotine dependence, we targeted over 300 candidate genes and analyzed 3713 single nucleotide polymorphisms (SNPs) in 1050 cases and 879 controls. The Fagerstrom test for nicotine dependence (FTND) was used to assess dependence, in which cases were required to have an FTND of 4 or more. The control criterion was strict: control subjects must have smoked at least 100 cigarettes in their lifetimes and had an FTND of 0 during the heaviest period of smoking. After correcting for multiple testing by controlling the false discovery rate, several cholinergic nicotinic receptor genes dominated the top signals. The strongest association was from an SNP representing CHRNB3, the beta3 nicotinic receptor subunit gene (P = 9.4 x 10(-5)). Biologically, the most compelling evidence for a risk variant came from a non-synonymous SNP in the alpha5 nicotinic receptor subunit gene CHRNA5 (P = 6.4 x 10(-4)). This SNP exhibited evidence of a recessive mode of inheritance, resulting in individuals having a 2-fold increase in risk of developing nicotine dependence once exposed to cigarette smoking. Other genes among the top signals were KCNJ6 and GABRA4. This study represents one of the most powerful and extensive studies of nicotine dependence to date and has found novel risk loci that require confirmation by replication studies
    corecore