14 research outputs found

    Design status of ASPIICS, an externally occulted coronagraph for PROBA-3

    Get PDF
    The "sonic region" of the Sun corona remains extremely difficult to observe with spatial resolution and sensitivity sufficient to understand the fine scale phenomena that govern the quiescent solar corona, as well as phenomena that lead to coronal mass ejections (CMEs), which influence space weather. Improvement on this front requires eclipse-like conditions over long observation times. The space-borne coronagraphs flown so far provided a continuous coverage of the external parts of the corona but their over-occulting system did not permit to analyse the part of the white-light corona where the main coronal mass is concentrated. The proposed PROBA-3 Coronagraph System, also known as ASPIICS (Association of Spacecraft for Polarimetric and Imaging Investigation of the Corona of the Sun), with its novel design, will be the first space coronagraph to cover the range of radial distances between ~1.08 and 3 solar radii where the magnetic field plays a crucial role in the coronal dynamics, thus providing continuous observational conditions very close to those during a total solar eclipse. PROBA-3 is first a mission devoted to the in-orbit demonstration of precise formation flying techniques and technologies for future European missions, which will fly ASPIICS as primary payload. The instrument is distributed over two satellites flying in formation (approx. 150m apart) to form a giant coronagraph capable of producing a nearly perfect eclipse allowing observing the sun corona closer to the rim than ever before. The coronagraph instrument is developed by a large European consortium including about 20 partners from 7 countries under the auspices of the European Space Agency. This paper is reviewing the recent improvements and design updates of the ASPIICS instrument as it is stepping into the detailed design phase

    TASTE in action

    No full text
    International audienceIn this paper, we present the results of the past years of active development and use of a set of tools named TASTE, which is developed under the supervision of the European Space Agency (ESA) since 2008. TASTE was created to facilitate the development of software using a combination of modern development techniques including formal methods, domain­ specific languages and graphical editors to offer a nice user experience. Being free and favouring accessible APIs, TASTE is open and can be used in many areas, covering educational purposes as well as application on operational projects. We show how some of the TASTE core technologies, based on well­ established languages, are actually used for the development of satellite instrument on­ board software and documentation. As a technology demonstrator and lab experimentation platform, TASTE enables the investigation and exploration of techniques that are not commonly used in industry yet, such as functional programming, data and behavioural modelling, property checking, multi­-core systems, etc. The objective is to make better software using a solid engineering approach that does not stay stuck to the traditional " Text­-based requirements translated to C source code " which is still mostly applied when developing embedded systems. But more than presenting a collection of technologies, this paper also explains our strategy and why a technical organisation such as ESA is probably the right one to lead the development of such tools and ensure their long-­term support

    From Graphs to the Science Computer of a Space Telescope. The power of Petri Nets in Systems Engineering

    Get PDF
    Space system engineering has to follow a rigorous design process to manage performance/risk trade-offs at each development stage and possibly across several functional and organizational domains. The process is further complicated by the co-development of multiple solutions, each contributing differently to the goal and with different tradeoffs. Moreover, the design process is iterative, involving both changing requirements and specifications along the different ways that lead to the set goal of the mission. The above requires rigorous modeling that, in addition, must be easily extendible and maintainable across organizational units. On the example of the PROBA-3 science computer (instrument control unit, CCB DPU), we show how Petri Nets can serve as such a simple-to-maintain, holistic model, combining finite-state characterizations with dynamic system behavior caused by hardware-software interactions, to express the component-state dependent end-to-end performance characteristics of the system. The paper elaborates on how the proposed Petri-Net modeling scheme allows for system architecture optimization that result in safely reduced technical margins and in turn substantial savings in components costs. We show that performance metrics, obtained from simulation, correlate well with the real performance characteristics of the flight model of PROBA-3's science computer

    AI-Based Detection of Oral Squamous Cell Carcinoma with Raman Histology

    No full text
    Stimulated Raman Histology (SRH) employs the stimulated Raman scattering (SRS) of photons at biomolecules in tissue samples to generate histological images. Subsequent pathological analysis allows for an intraoperative evaluation without the need for sectioning and staining. The objective of this study was to investigate a deep learning-based classification of oral squamous cell carcinoma (OSCC) and the sub-classification of non-malignant tissue types, as well as to compare the performances of the classifier between SRS and SRH images. Raman shifts were measured at wavenumbers k1 = 2845 cm−1 and k2 = 2930 cm−1. SRS images were transformed into SRH images resembling traditional H&E-stained frozen sections. The annotation of 6 tissue types was performed on images obtained from 80 tissue samples from eight OSCC patients. A VGG19-based convolutional neural network was then trained on 64 SRS images (and corresponding SRH images) and tested on 16. A balanced accuracy of 0.90 (0.87 for SRH images) and F1-scores of 0.91 (0.91 for SRH) for stroma, 0.98 (0.96 for SRH) for adipose tissue, 0.90 (0.87 for SRH) for squamous epithelium, 0.92 (0.76 for SRH) for muscle, 0.87 (0.90 for SRH) for glandular tissue, and 0.88 (0.87 for SRH) for tumor were achieved. The results of this study demonstrate the suitability of deep learning for the intraoperative identification of tissue types directly on SRS and SRH images

    Multiple Immunostainings with Different Epitope Retrievals—The FOLGAS Protocol

    No full text
    We describe a sequential multistaining protocol for immunohistochemistry, immunofluorescence and CyTOF imaging for formalin-fixed, paraffin-embedded specimens (FFPE) in the formalin gas-phase (FOLGAS), enabling sequential multistaining, independent from the primary and secondary antibodies and retrieval. Histomorphologic details are preserved, and crossreactivity and loss of signal intensity are not detectable. Combined with a DAB-based hydrophobic masking of metal-labeled primary antibodies, FOLGAS allows the extended use of CyTOF imaging in FFPE sections

    Design status of ASPIICS, an externally occulted coronagraph for PROBA-3.

    No full text
    The “sonic region” of the Sun corona remains extremely difficult to observe with spatial resolution and sensitivity sufficient to understand the fine scale phenomena that govern the quiescent solar corona, as well as phenomena that lead to coronal mass ejections (CMEs), which influence space weather. Improvement on this front requires eclipse-like conditions over long observation times. The space-borne coronagraphs flown so far provided a continuous coverage of the external parts of the corona but their over-occulting system did not permit to analyse the part of the white-light corona where the main coronal mass is concentrated. The proposed PROBA-3 Coronagraph System, also known as ASPIICS (Association of Spacecraft for Polarimetric and Imaging Investigation of the Corona of the Sun), with its novel design, will be the first space coronagraph to cover the range of radial distances between similar to 1.08 and 3 solar radii where the magnetic field plays a crucial role in the coronal dynamics, thus providing continuous observational conditions very close to those during a total solar eclipse. PROBA-3 is first a mission devoted to the in-orbit demonstration of precise formation flying techniques and technologies for future European missions, which will fly ASPIICS as primary payload. The instrument is distributed over two satellites flying in formation (approx. 150m apart) to form a giant coronagraph capable of producing a nearly perfect eclipse allowing observing the sun corona closer to the rim than ever before. The coronagraph instrument is developed by a large European consortium including about 20 partners from 7 countries under the auspices of the European Space Agency. This paper is reviewing the recent improvements and design updates of the ASPIICS instrument as it is stepping into the detailed design phase
    corecore