147 research outputs found

    Collaborative platforms for streamlining workflows in Open Science

    Get PDF
    Despite the internet’s dynamic and collaborative nature, scientists continue to produce grant proposals, lab notebooks, data files, conclusions etc. that stay in static formats or are not published online and therefore not always easily accessible to the interested public. Because of limited adoption of tools that seamlessly integrate all aspects of a research project (conception, data generation, data evaluation, peer-reviewing and publishing of conclusions), much effort is later spent on reproducing or reformatting individual entities before they can be repurposed independently or as parts of articles.

We propose that workflows - performed both individually and collaboratively - could potentially become more efficient if all steps of the research cycle were coherently represented online and the underlying data were formatted, annotated and licensed for reuse. Such a system would accelerate the process of taking projects from conception to publication stages and allow for continuous updating of the data sets and their interpretation as well as their integration into other independent projects.

A major advantage of such workflows is the increased transparency, both with respect to the scientific process as to the contribution of each participant. The latter point is important from a perspective of motivation, as it enables the allocation of reputation, which creates incentives for scientists to contribute to projects. Such workflow platforms offering possibilities to fine-tune the accessibility of their content could gradually pave the path from the current static mode of research presentation into
a more coherent practice of open science

    Genome-wide transcription start site profiling in biofilm-grown Burkholderia cenocepacia J2315

    Get PDF
    Background: Burkholderia cenocepacia is a soil-dwelling Gram-negative Betaproteobacterium with an important role as opportunistic pathogen in humans. Infections with B. cenocepacia are very difficult to treat due to their high intrinsic resistance to most antibiotics. Biofilm formation further adds to their antibiotic resistance. B. cenocepacia harbours a large, multi-replicon genome with a high GC-content, the reference genome of strain J2315 includes 7374 annotated genes. This study aims to annotate transcription start sites and identify novel transcripts on a whole genome scale. Methods: RNA extracted from B. cenocepacia J2315 biofilms was analysed by differential RNA-sequencing and the resulting dataset compared to data derived from conventional, global RNA-sequencing. Transcription start sites were annotated and further analysed according to their position relative to annotated genes. Results: Four thousand ten transcription start sites were mapped over the whole B. cenocepacia genome and the primary transcription start site of 2089 genes expressed in B. cenocepacia biofilms were defined. For 64 genes a start codon alternative to the annotated one was proposed. Substantial antisense transcription for 105 genes and two novel protein coding sequences were identified. The distribution of internal transcription start sites can be used to identify genomic islands in B. cenocepacia. A potassium pump strongly induced only under biofilm conditions was found and 15 non-coding small RNAs highly expressed in biofilms were discovered. Conclusions: Mapping transcription start sites across the B. cenocepacia genome added relevant information to the J2315 annotation. Genes and novel regulatory RNAs putatively involved in B. cenocepacia biofilm formation were identified. These findings will help in understanding regulation of B. cenocepacia biofilm formation

    Effect of shear stress on Pseudomonas aeruginosa isolated from the cystic fibrosis lung

    Get PDF
    Chronic colonization of the lungs by Pseudomonas aeruginosa is one of the major causes of morbidity and mortality in cystic fibrosis (CF) patients. To gain insights into the characteristic biofilm phenotype of P. aeruginosa in the CF lungs, mimicking the CF lung environment is critical. We previously showed that growth of the non-CF-adapted P. aeruginosa PAO1 strain in a rotating wall vessel, a device that simulates the low fluid shear (LS) conditions present in the CF lung, leads to the formation of in-suspension, self-aggregating biofilms. In the present study, we determined the phenotypic and transcriptomic changes associated with the growth of a highly adapted, transmissible P. aeruginosa CF strain in artificial sputum medium under LS conditions. Robust self-aggregating biofilms were observed only under LS conditions. Growth under LS conditions resulted in the upregulation of genes involved in stress response, alginate biosynthesis, denitrification, glycine betaine biosynthesis, glycerol metabolism, and cell shape maintenance, while genes involved in phenazine biosynthesis, type VI secretion, and multidrug efflux were downregulated. In addition, a number of small RNAs appeared to be involved in the response to shear stress. Finally, quorum sensing was found to be slightly but significantly affected by shear stress, resulting in higher production of autoinducer molecules during growth under high fluid shear (HS) conditions. In summary, our study revealed a way to modulate the behavior of a highly adapted P. aeruginosa CF strain by means of introducing shear stress, driving it from a biofilm lifestyle to a more planktonic lifestyle. IMPORTANCE: Biofilm formation by Pseudomonas aeruginosa is one of the hallmarks of chronic cystic fibrosis (CF) lung infections. The biofilm matrix protects this bacterium from antibiotics as well as from the immune system. Hence, the prevention or reversion of biofilm formation is believed to have a great impact on treatment of chronic P. aeruginosa CF lung infections. In the present study, we showed that it is possible to modulate the behavior of a highly adapted transmissible P. aeruginosa CF isolate at both the transcriptomic and phenotypic levels by introducing shear stress in a CF-like environment, driving it from a biofilm to a planktonic lifestyle. Consequently, the results obtained in this study are of great importance with regard to therapeutic applications that introduce shear stress in the lungs of CF patients

    High-Resolution Transcriptome Maps Reveal Strain-Specific Regulatory Features of Multiple Campylobacter jejuni Isolates

    Get PDF
    Campylobacter jejuni is currently the leading cause of bacterial gastroenteritis in humans. Comparison of multiple Campylobacter strains revealed a high genetic and phenotypic diversity. However, little is known about differences in transcriptome organization, gene expression, and small RNA (sRNA) repertoires. Here we present the first comparative primary transcriptome analysis based on the differential RNA–seq (dRNA–seq) of four C. jejuni isolates. Our approach includes a novel, generic method for the automated annotation of transcriptional start sites (TSS), which allowed us to provide genome-wide promoter maps in the analyzed strains. These global TSS maps are refined through the integration of a SuperGenome approach that allows for a comparative TSS annotation by mapping RNA–seq data of multiple strains into a common coordinate system derived from a whole-genome alignment. Considering the steadily increasing amount of RNA–seq studies, our automated TSS annotation will not only facilitate transcriptome annotation for a wider range of pro- and eukaryotes but can also be adapted for the analysis among different growth or stress conditions. Our comparative dRNA–seq analysis revealed conservation of most TSS, but also single-nucleotide-polymorphisms (SNP) in promoter regions, which lead to strain-specific transcriptional output. Furthermore, we identified strain-specific sRNA repertoires that could contribute to differential gene regulation among strains. In addition, we identified a novel minimal CRISPR-system in Campylobacter of the type-II CRISPR subtype, which relies on the host factor RNase III and a trans-encoded sRNA for maturation of crRNAs. This minimal system of Campylobacter, which seems active in only some strains, employs a unique maturation pathway, since the crRNAs are transcribed from individual promoters in the upstream repeats and thereby minimize the requirements for the maturation machinery. Overall, our study provides new insights into strain-specific transcriptome organization and sRNAs, and reveals genes that could modulate phenotypic variation among strains despite high conservation at the DNA level

    Dual-RNAseq Analysis Unravels Virus-Host Interactions of MetSV and Methanosarcina mazei

    Get PDF
    Methanosarcina spherical virus (MetSV), infecting Methanosarcina species, encodes 22 genes, but their role in the infection process in combination with host genes has remained unknown. To study the infection process in detail, infected and uninfected M. mazei cultures were compared using dual-RNAseq, qRT-PCRs, and transmission electron microscopy (TEM). The transcriptome analysis strongly indicates a combined role of virus and host genes in replication, virus assembly, and lysis. Thereby, 285 host and virus genes were significantly regulated. Within these 285 regulated genes, a network of the viral polymerase, MetSVORF6, MetSVORF5, MetSVORF2, and the host genes encoding NrdD, NrdG, a CDC48 family protein, and a SSB protein with a role in viral replication was postulated. Ultrastructural analysis at 180 min p.i. revealed many infected cells with virus particles randomly scattered throughout the cytoplasm or attached at the cell surface, and membrane fragments indicating cell lysis. Dual-RNAseq and qRT-PCR analyses suggested a multifactorial lysis reaction in potential connection to the regulation of a cysteine proteinase, a pirin-like protein and a HicB-solo protein. Our study's results led to the first preliminary infection model of MetSV infecting M. mazei, summarizing the key infection steps as follows: replication, assembly, and host cell lysis

    Recommendations on the development, use and provision of Research Software

    Get PDF
    These recommendations describe challenges relating to research software and provide recommendations for the development, use and provision of this type of software. The relevance of research software to modern research should be clearly underlined, especially in the context of political debate on digital transformation in the sciences and humanities. This document was prepared by the Research Software Working Group, established in 2016, within the Alliance initiative

    A New Bioactive Compound From the Marine Sponge-Derived Streptomyces sp. SBT348 Inhibits Staphylococcal Growth and Biofilm Formation

    Get PDF
    Staphylococcus epidermidis, the common inhabitant of human skin and mucosal surfaces has emerged as an important pathogen in patients carrying surgical implants and medical devices. Entering the body via surgical sites and colonizing the medical devices through formation of multi-layered biofilms leads to refractory and persistent device-related infections (DRIs). Staphylococci organized in biofilms are more tolerant to antibiotics and immune responses, and thus are difficult-to-treat. The consequent morbidity and mortality, and economic losses in health care systems has strongly necessitated the need for development of new anti-bacterial and anti-biofilm-based therapeutics. In this study, we describe the biological activity of a marine sponge-derived Streptomyces sp. SBT348 extract in restraining staphylococcal growth and biofilm formation on polystyrene, glass, medically relevant titan metal, and silicone surfaces. A bioassay-guided fractionation was performed to isolate the active compound (SKC3) from the crude SBT348 extract. Our results demonstrated that SKC3 effectively inhibits the growth (MIC: 31.25 μg/ml) and biofilm formation (sub-MIC range: 1.95–<31.25 μg/ml) of S. epidermidis RP62A in vitro. Chemical characterization of SKC3 by heat and enzyme treatments, and mass spectrometry (HRMS) revealed its heat-stable and non-proteinaceous nature, and high molecular weight (1258.3 Da). Cytotoxicity profiling of SKC3 in vitro on mouse fibroblast (NIH/3T3) and macrophage (J774.1) cell lines, and in vivo on the greater wax moth larvae Galleria mellonella revealed its non-toxic nature at the effective dose. Transcriptome analysis of SKC3 treated S. epidermidis RP62A has further unmasked its negative effect on central metabolism such as carbon flux as well as, amino acid, lipid, and energy metabolism. Taken together, these findings suggest a potential of SKC3 as a putative drug to prevent staphylococcal DRIs

    Induced Pluripotent Stem Cell-Derived Brain Endothelial Cells as a Cellular Model to Study Neisseria meningitidis Infection

    Get PDF
    Meningococcal meningitis is a severe central nervous system infection that occurs when Neisseria meningitidis (Nm) penetrates brain endothelial cells (BECs) of the meningeal blood-cerebrospinal fluid barrier. As a human-specific pathogen, in vivo models are greatly limited and pose a significant challenge. In vitro cell models have been developed, however, most lack critical BEC phenotypes limiting their usefulness. Human BECs generated from induced pluripotent stem cells (iPSCs) retain BEC properties and offer the prospect of modeling the human-specific Nm interaction with BECs. Here, we exploit iPSC-BECs as a novel cellular model to study Nm host-pathogen interactions, and provide an overview of host responses to Nm infection. Using iPSC-BECs, we first confirmed that multiple Nm strains and mutants follow similar phenotypes to previously described models. The recruitment of the recently published pilus adhesin receptor CD147 underneath meningococcal microcolonies could be verified in iPSC-BECs. Nm was also observed to significantly increase the expression of pro-inflammatory and neutrophil-specific chemokines IL6, CXCL1, CXCL2, CXCL8, and CCL20, and the secretion of IFN-γ and RANTES. For the first time, we directly observe that Nm disrupts the three tight junction proteins ZO-1, Occludin, and Claudin-5, which become frayed and/or discontinuous in BECs upon Nm challenge. In accordance with tight junction loss, a sharp loss in trans-endothelial electrical resistance, and an increase in sodium fluorescein permeability and in bacterial transmigration, was observed. Finally, we established RNA-Seq of sorted, infected iPSC-BECs, providing expression data of Nm-responsive host genes. Altogether, this model provides novel insights into Nm pathogenesis, including an impact of Nm on barrier properties and tight junction complexes, and suggests that the paracellular route may contribute to Nm traversal of BECs
    corecore