141 research outputs found

    Research Note:<br>Use of a distributed erosion model (AGNPS) for planning small reservoirs in the Upper Torysa basin

    No full text
    International audienceThis paper assesses the vulnerability to erosion of the soils in the upper Torysa catchment down to the planned drinking water reservoir at Tichy Potok (Slovakia). Experimental observations in the Torysa catchment, together with the outputs of the AGricultural Non-Point Source pollution model (AGNPS), have been used to select optimal sites for small sediment-trapping dams on the Torysa tributaries. The rainfall scenario for the upper Torysa was determined from records at the Plavec climate station from 1980?1998. In addition, an extreme rainfall event scenario was envisaged (100 mm rainfall in three hours); AGNPS model simulations suggest that such an event might produce as much as half or even the total amount of sediment generated by all the rainfalls over the whole period of simulation, 1980?1998. Keywords: erosion, sediment transport, simulation, AGNPS model, Torysa basi

    Application of seismic parameters for estimation of destress blasting effectiveness

    Get PDF
    Coal seams in the Upper Silesian Coal Basin are currently extracted under more and more disadvantageous geological and mining conditions. Mining depth, geological dislocations and mining remnants are factors which affect the rockburst hazard during underground mining to the greatest extent. This hazard can be minimized by employment of active rockburst prevention, where long-hole destress blasts in roof rocks (torpedo blasts) have an important role. The main goal of these blastings is to either destress local stress concentrations in rock mass and to fracture the thick layers of strong roof rocks to prevent or minimize the impact of high energy tremors on the excavations. Sometimes, these blastings are performed to make the roof rocks caving behind the longwall face easier. The efficiency of blasting is typically evaluated from the seismic effect, which is calculated based on seismic monitoring data (seismic energy) and the weight of the charged explosive. This method, as used previously in the Czech Republic, was adopted in a selected Polish hard coal mine in the Upper Silesian Coal Basin. This method enables rapid and easy estimation of destress blasting effectiveness, adjusted to conditions occurring in the designed colliery. Destress blasts effectiveness may be evaluated via the seismic source parameters analysis as well, as was carried out in the selected colliery in the Polish part of the Upper Silesian Coal Basin. These parameters provide information, for example, on its size, state of stress and occurrence of slip mechanism in the source of provoked tremors. Long-hole destress blasting effectiveness in selected colliery has been evaluated using the seismic effect method and seismic source parameters analysis. The results were compared with each other and conditions were observed in situ

    Geophysical Evaluation of Effectiveness of Blasting for Roof Caving During Longwall Mining of Coal Seam

    Get PDF
    Deep longwall mining of coal seams is made in the Upper Silesian Coal Basin (USCB) under complicated and mostly unfavourable geological and mining conditions. Usually, it is correlated with rockburst hazard mostly at a high level. One of the geological factors affecting the state of rockburst hazard is the presence of competent rocks in the roof of extracted coal seams, so rock falling behind the longwall face does not occur, and hangingup of roof rocks remains. The long-lasting absence of caving may lead to an occurrence of high-energy tremor in the vicinity of the longwall face. Roof caving behind the longwall face may be forced by blasting. The column of explosives is then located in blastholes drilled in layers of roof rocks, e.g. sandstones behind the longwall face. In this article, a characterization of tremors initiated by blasts for roof caving during underground extraction of coal seam no. 507 in one of the collieries in the USCB has been made using three independent methods. By the basic seismic effect method, the effectiveness of blasting is evaluated according to the seismic energy of incited tremors and mass of explosives used. According to this method, selected blasts gave extremely good or excellent effect. An inversion of the seismic moment tensor enables determining the processes happening in the source of tremors. In the foci of provoked tremors the slip mechanism dominated or was clearly distinguished. The expected explosion had lesser significance or was not present. By the seismic source parameters analysis, among other things, an estimation of the stress drop in the focus or its size may be determined. The stress drop in the foci of provoked tremors was in the order of 105 Pa and the source radius, according to the Brune’s model, varied from 44.3 to 64.5 m. The results of the three mentioned methods were compared with each other and observations in situ. In all cases the roof falling was forced

    Thermal Stability and Rehybridization of Carbon Bonding in Tetrahedral Amorphous Carbon

    Get PDF
    We preform a quantitative investigation of the energetics of thermally induced sp3 → sp2 conversion of carbon-carbon bonds in tetrahedral amorphous carbon (ta-C) films by using near edge x-ray absorption fine structure (NEXAFS) and Raman spectroscopy. We investigate the evolution of the bonding configuration in ta-C thin films subjected to high temperature annealing in flowing Argon gas using a rapid thermal annealing furnace over the range of 200-1000 ÂșC. We observe no substantial change in bonding structure below 600 ÂșC, and by 1000 ÂșC a significant increase in the sp2 bonding in the film is observed. No oxygen bonding is detected in the NEXAFS spectra, but we do observe an isosbestic point, demonstrating that the thermally driven sp3 → sp2 conversion reaction occurs without passing through an intermediate transition state. This allows us to use NEAFS spectra of thermally annealed ta-C films to quantitatively determine that the activation energy for directly converting the sp3-bonded carbon to the s

    Predicting Hemiwicking Dynamics on Textured Substrates

    Get PDF
    The ability to predict liquid transport rates on textured surfaces is key to the design and optimization of devices and processes such as oil recovery, coatings, reaction-separation, high-throughput screening, and thermal management. In this work we develop a fully analytical model to predict the propagation coefficients for liquids hemiwicking through micropillar arrays. This is carried out by balancing the capillary driving force and a viscous resistive force and solving the Navier–Stokes equation for representative channels. The model is validated against a large data set of experimental hemiwicking coefficients harvested from the literature and measured in-house using high-speed imaging. The theoretical predictions show excellent agreement with the measured values and improved accuracy compared to previously proposed models. Furthermore, using lattice Boltzmann (LB) simulations, we demonstrate that the present model is applicable over a broad range of geometries. The scaling of velocity with texture geometry, implicit in our model, is compared against experimental data, where good agreement is observed for most practical systems. The analytical expression presented here offers a tool for developing design guidelines for surface chemistry and microstructure selection for liquid propagation on textured surfaces

    Influence of Surface Passivation on the Friction and Wear Behavior of Ultrananocrystalline Diamond and Tetrahedral Amorphous Carbon Thin Films

    Get PDF
    Highly sp3-bonded, nearly hydrogen-free carbon-based materials can exhibit extremely low friction and wear in the absence of any liquid lubricant, but this physical behavior is limited by the vapor environment. The effect of water vapor on friction and wear is examined as a function of applied normal force for two such materials in thin film form: one that is fully amorphous in structure (tetrahedral amorphous carbon, or ta-C) and one that is polycrystalline with sp3 to disordered sp2 bonding is observed, no crystalline graphite formation is observed for either film. Rather, the primary solid-lubrication mechanism is the passivation of dangling bonds by OH and H from the dissociation of vapor-phase H2O. This vapor-phase lubrication mechanism is highly effective, producing friction coefficients as low as 0.078 for ta-C and 0.008 for UNCD, and wear rates requiring thousands of sliding passes to produce a few nanometers of wear

    Evidence of nanostructuration from the heat capacities of the 1,3-dialkylimidazolium bis(trifluoromethylsulfonyl)imide ionic liquid series

    Get PDF
    In the present work, the heat capacities at T = 298.15 K of 1,3-dialkylimidazolium bis(trifluoromethylsulfonyl)imide, [C(N/2)C(N/2)im][NTf2], were measured, for the first time, using a high-precision heat capacity drop calorimeter, with an uncertainty of less than 0.15%. Based on the obtained results, it was possible to evaluate the effect of the cation symmetry on the heat capacity data through a comparative analysis with the [C(N-1)C(1)im][NTf2] ionic liquid series. The molar heat capacities of the [C(N/2)C(N/2)im][NTf2] ionic liquids series present a less pronounced deviation from the linearity along the alkyl chain length than the asymmetric based ionic liquids series. Lower molar heat capacities for the symmetric than the asymmetric series were observed, being this difference more evident for the specific and volumic heat capacities. As observed for the [C(N-1)C(1)im][NTf2] series, a trend shift in the heat capacities at [C(6)C(6)im][NTf2] was found that reflects the impact of nonpolar region nanostructuration on the thermophysical properties of the ionic liquids. The profile of the two regions is in agreement with the expected effect arising from the nanostructuration in ionic liquids. The results obtained in the present work show a clear indication that for the symmetric series, [C(N/2)C(N/2)im][NTf2], the starting of the liquid phase nanostructuration/alkyl chain segregation occurs around [C(6)C(6)im][NTf2]. (C) 2013 AIP Publishing LLC
    • 

    corecore