197 research outputs found

    Tricarboxylic Acid Cycle Activity Measured by 13C Magnetic Resonance Spectroscopy in Rats Subjected to the Kaolin Model of Obstructed Hydrocephalus

    Get PDF
    Evaluating early changes in cerebral metabolism in hydrocephalus can help in the decision making and the timing of surgical intervention. This study was aimed at examining the tricarboxylic acid (TCA) cycle rate and 13C label incorporation into neurotransmitter amino acids and other compounds 2 weeks after rats were subjected to kaolin-induced progressive hydrocephalus. In vivo and ex vivo magnetic resonance spectroscopy (MRS), combined with the infusion of [1,6-13C]glucose, was used to monitor the time courses of 13C label incorporation into the different carbon positions of glutamate in the forebrains of rats with hydrocephalus as well as in those of controls. Metabolic rates were determined by fitting the measured data into a one-compartment metabolic model. The TCA cycle rate was 1.3 ± 0.2 μmoles/gram/minute in the controls and 0.8 ± 0.4 μmoles/gram/minute in the acute hydrocephalus group, the exchange rate between α-ketoglutarate and glutamate was 4.1 ± 2.5 μmoles/gram/minute in the controls and 2.7 ± 2.6 μmoles/gram/minute in the hydrocephalus group calculated from in vivo MRS. There were no statistically significant differences between these rates. Hydrocephalus caused a decrease in the amounts of glutamate, alanine and taurine. In addition, the concentration of the neuronal marker N-acetyl aspartate was decreased. 13C Labelling of most amino acids derived from [1,6-13C]glucose was unchanged 2 weeks after hydrocephalus induction. The only indication of astrocyte impairment was the decreased 13C enrichment in glutamine C-2. This study shows that hydrocephalus causes subtle but significant alterations in neuronal metabolism already early in the course of the disease. These sub-lethal changes, however, if maintained and if ongoing might explain the delayed and programmed neuronal damage as seen in chronic hydrocephalus

    Compensatory-reserve-weighted intracranial pressure versus intracranial pressure for outcome association in adult traumatic brain injury: a CENTER-TBI validation study

    Get PDF
    Background: Compensatory-reserve-weighted intracranial pressure (wICP) has recently been suggested as a supplementary measure of intracranial pressure (ICP) in adult traumatic brain injury (TBI), with a single-center study suggesting an association with mortality at 6 months. No multi-center studies exist to validate this relationship. The goal was to compare wICP to ICP for association with outcome in a multi-center TBI cohort. Methods: Using the Collaborative European Neuro Trauma Effectiveness Research in TBI (CENTER-TBI) high-resolution intensive care unit (ICU) cohort, we derived ICP and wICP (calculated as wICP = (1 12 RAP) 7 ICP; where RAP is the compensatory reserve index derived from the moving correlation between pulse amplitude of ICP and ICP). Various univariate logistic regression models were created comparing ICP and wICP to dichotomized outcome at 6 to 12 months, based on Glasgow Outcome Score\u2014Extended (GOSE) (alive/dead\u2014GOSE 65 2/GOSE = 1; favorable/unfavorable\u2014GOSE 5 to 8/GOSE 1 to 4, respectively). Models were compared using area under the receiver operating curves (AUC) and p values. Results: wICP displayed higher AUC compared to ICP on univariate regression for alive/dead outcome compared to mean ICP (AUC 0.712, 95% CI 0.615\u20130.810, p = 0.0002, and AUC 0.642, 95% CI 0.538\u2013746, p < 0.0001, respectively; no significant difference on Delong\u2019s test), and for favorable/unfavorable outcome (AUC 0.627, 95% CI 0.548\u20130.705, p = 0.015, and AUC 0.495, 95% CI 0.413\u20130.577, p = 0.059; significantly different using Delong\u2019s test p = 0.002), with lower wICP values associated with improved outcomes (p < 0.05 for both). These relationships on univariate analysis held true even when comparing the wICP models with those containing both ICP and RAP integrated area under the curve over time (p < 0.05 for all via Delong\u2019s test). Conclusions: Compensatory-reserve-weighted ICP displays superior outcome association for both alive/dead and favorable/unfavorable dichotomized outcomes in adult TBI, through univariate analysis. Lower wICP is associated with better global outcomes. The results of this study provide multi-center validation of those seen in a previous single-center study

    Univariate comparison of performance of different cerebrovascular reactivity indices for outcome association in adult TBI: a CENTER-TBI study

    Get PDF
    Background: Monitoring cerebrovascular reactivity in adult traumatic brain injury (TBI) has been linked to global patient outcome. Three intra-cranial pressure (ICP)-derived indices have been described. It is unknown which index is superior for outcome association in TBI outside previous single-center evaluations. The goal of this study is to evaluate indices for 6- to 12-month outcome association using uniform data harvested in multiple centers. Methods: Using the prospectively collected data from the Collaborative European NeuroTrauma Effectiveness Research in TBI (CENTER-TBI) study, the following indices of cerebrovascular reactivity were derived: PRx (correlation between ICP and mean arterial pressure (MAP)), PAx (correlation between pulse amplitude of ICP (AMP) and MAP), and RAC (correlation between AMP and cerebral perfusion pressure (CPP)). Univariate logistic regression models were created to assess the association between vascular reactivity indices with global dichotomized outcome at 6 to 12 months, as assessed by Glasgow Outcome Score\u2013Extended (GOSE). Models were compared via area under the receiver operating curve (AUC) and Delong\u2019s test. Results: Two separate patient groups from this cohort were assessed: the total population with available data (n = 204) and only those without decompressive craniectomy (n = 159), with identical results. PRx, PAx, and RAC perform similar in outcome association for both dichotomized outcomes, alive/dead and favorable/unfavorable, with RAC trending towards higher AUC values. There were statistically higher mean values for the index, % time above threshold, and hourly dose above threshold for each of PRx, PAx, and RAC in those patients with poor outcomes. Conclusions: PRx, PAx, and RAC appear similar in their associations with 6- to 12-month outcome in moderate/severe adult TBI, with RAC showing tendency to achieve stronger associations. Further work is required to determine the role for each of these cerebrovascular indices in monitoring of TBI patients

    Brain death and postmortem organ donation: Report of a questionnaire from the CENTER-TBI study

    Get PDF
    Background: We aimed to investigate the extent of the agreement on practices around brain death and postmortem organ donation. Methods: Investigators from 67 Collaborative European NeuroTrauma Effectiveness Research in Traumatic Brain Injury (CENTER-TBI) study centers completed several questionnaires (response rate: 99%). Results: Regarding practices around brain death, we found agreement on the clinical evaluation (prerequisites and neurological assessment) for brain death determination (BDD) in 100% of the centers. However, ancillary tests were required for BDD in 64% of the centers. BDD for nondonor patients was deemed mandatory in 18% of the centers before withdrawing life-sustaining measures (LSM). Also, practices around postmortem organ donation varied. Organ donation after circulatory arrest was forbidden in 45% of the centers. When withdrawal of LSM was contemplated, in 67% of centers the patients with a ventricular drain in situ had this removed, either sometimes or all of the time. Conclusions: This study showed both agreement and some regional differences regarding practices around brain death and postmortem organ donation. We hope our results help quantify and understand potential differences, and provide impetus for current dialogs toward further harmonization of practices around brain death and postmortem organ donation

    Collaborative European NeuroTrauma Effectiveness Research in Traumatic Brain Injury (CENTER-TBI): A Prospective Longitudinal Observational Study

    Get PDF
    BACKGROUND: Current classification of traumatic brain injury (TBI) is suboptimal, and management is based on weak evidence, with little attempt to personalize treatment. A need exists for new precision medicine and stratified management approaches that incorporate emerging technologies. OBJECTIVE: To improve characterization and classification of TBI and to identify best clinical care, using comparative effectiveness research approaches. METHODS: This multicenter, longitudinal, prospective, observational study in 22 countries across Europe and Israel will collect detailed data from 5400 consenting patients, presenting within 24 hours of injury, with a clinical diagnosis of TBI and an indication for computed tomography. Broader registry-level data collection in approximately 20 000 patients will assess generalizability. Cross sectional comprehensive outcome assessments, including quality of life and neuropsychological testing, will be performed at 6 months. Longitudinal assessments will continue up to 24 months post TBI in patient subsets. Advanced neuroimaging and genomic and biomarker data will be used to improve characterization, and analyses will include neuroinformatics approaches to address variations in process and clinical care. Results will be integrated with living systematic reviews in a process of knowledge transfer. The study initiation was from October to December 2014, and the recruitment period was for 18 to 24 months. EXPECTED OUTCOMES: Collaborative European NeuroTrauma Effectiveness Research in TBI should provide novel multidimensional approaches to TBI characterization and classification, evidence to support treatment recommendations, and benchmarks for quality of care. Data and sample repositories will ensure opportunities for legacy research. DISCUSSION: Comparative effectiveness research provides an alternative to reductionistic clinical trials in restricted patient populations by exploiting differences in biology, care, and outcome to support optimal personalized patient management
    corecore